
Saarland University

Faculty of Natural Sciences and Technology I
Department of Computer Science

Master’s Thesis

Time-Scale Modification Algorithms

for Music Audio Signals

submitted by

Jonathan Driedger

submitted

November 3, 2011

Supervisor / Advisor

Priv.-Doz. Dr. Meinard Müller

Reviewers

Priv.-Doz. Dr. Meinard Müller

Prof. Dr. Michael Clausen

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement under Oath

I confirm under oath that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken,
(Datum / Date) (Unterschrift / Signature)

Acknowledgments

First of all I would like to express my deepest gratitude to my supervisor Meinard Müller
who gave me the possibility to work on this compelling topic. I never imagined that
writing my Master’s Thesis could be that fun, and the fact that it was is mainly due to
him. He always found the time to discuss my ongoing work with me and give me good
advice.

The next person I would like to thank is Peter Grosche. His dedication to help me, and also
all other students in the Multimedia Information Retrieval and Music Processing group,
is incredible. I can not remember a single time he sent me away when I had some sort of
question. He was a constant source of inspiration and motivation for me.

Furthermore, I would like to thank my fellow student and dear friend Thomas Prätzlich,
who was writing his Master’s Thesis at the same time as I did, for the hours and hours
of discussions and mutual assistance. It was nice to always have somebody to talk about
thesis-related problems.

I also would like to thank Verena Konz, Nanzhu Jiang and Marvin Künnemann for proof-
reading my thesis and giving me a lot of feedback as well as Zuo Zhe for helping me with
my experiments.

Last but not least I would like to thank my family and especially my partner Julia Hah-
nemann for their support throughout the time of writing this thesis.

Abstract

Sound is a phenomenon that lives in manifold dimensions. Besides pitch, volume, timbre
and many others, the time is an essential component. In the field of audio signal processing
not only the analysis of these aspects, and in particular the time aspect, but also their
modification is an important issue. When sound becomes music, time becomes tempo and
rhythm. Having the possibility to change the tempo and the rhythm of audio recordings
is extremely helpful for example when a DJ wants to adapt the tempos of two songs. But
when using analogue audio media like records or tapes, changing the playback speed of the
music does not only affect the tempo, but also the pitch of the sound. This looks different
in the world of digital audio recordings where algorithms were invented to decouple the
time-scale of audio signals from their pitch. These are typically referred to as time-scale
modification (TSM) algorithms. But although there exists a large variety of different
algorithmic approaches to the field of TSM of audio recordings, there is no algorithm that
produces artifact-free results robustly.

The goal of this thesis is therefore to analyze what makes TSM difficult and where ar-
tifacts originate from. We investigate two prominent TSM algorithms, one working in
the time-domain (WSOLA) and one working in the frequency-domain (Phase Vocoder).
Both algorithms produce their very own artifacts which we analyze and classify. Using
the example of WSOLA, we show how to overcome a certain class of artifacts that are
frequently produced by time-domain TSM algorithms at transients in audio signals. To
evaluate the quality of different TSM algorithms we present the results of a listening
test that we performed. Finally we integrate our knowledge about TSM algorithms into
a soundtrack generation system that allows for creating euphonious transitions between
audio recordings.

Contents

1 Introduction 1

1.1 Time-Scale Modification of Audio Signals 1

1.2 Motivating Application . 2

1.3 The Connector . 3

1.4 Contribution . 4

1.5 Thesis Organization . 5

2 Basic Definitions, Notations and Tools 7

2.1 Audio Signals . 7

2.2 Pitch Features . 8

2.3 Chroma Features . 9

2.4 Beat-Synchronous Chroma Features . 11

3 Time-Scale Modification 13

3.1 Introduction . 13

3.2 Related Work . 15

3.3 General Definitions and Remarks . 16

4 WSOLA 21

4.1 OLA . 21

4.2 Improvements to OLA - The WSOLA Algorithm 25

4.3 Artifacts . 29

5 Phase Vocoder 35

5.1 Short Time Fourier Transform . 35

5.2 Phase Vocoder Pipeline . 37

5.3 Phase Propagation . 38

5.4 Modifications for a simple implementation 41

5.5 Artifacts . 44

6 Transient Preserving WSOLA 47

6.1 Anchor Points . 47

6.2 Transient Detection . 48

6.3 Transient Preservation . 53

6.4 Limitations of the Transient Preservation 56

7 Listening Test 63

iii

iv CONTENTS

7.1 Test Dataset . 63
7.2 Test Setup . 63
7.3 Results . 66

8 The Connector’s Pipeline 71
8.1 Related Work . 72
8.2 Matching . 73
8.3 Query Pool . 76
8.4 Database . 79
8.5 Warping . 79
8.6 Blending . 81

9 Future Work 83

A Source Code 85

B Listening Test Questionnaire 87

C Listening Test Comments 89

D The Connector 93

Bibliography 95

Chapter 1

Introduction

1.1 Time-Scale Modification of Audio Signals

Sound is a phenomenon that lives in manifold dimensions. Besides pitch, volume, timbre
and many others, the time is an essential component of audio signals. Being able not only
to analyze but also to modify aspects of sound is an important issue in the field of audio
signal processing. Therefore also the modification of the time aspect, which is generally
referred to as time-scale modification (TSM) of audio signals, has received a lot of interest.
The task is visualized in Figure 1.1. When sound becomes music, time becomes tempo and
rhythm. Having the possibility to change the tempo and the rhythm of audio recordings is
extremely helpful for example in the field of DJing when a DJ wants to adapt the tempos
of two songs. But when using analogue audio media like for example records or tapes,
changing the playback speed of the music does not only affect the tempo, but also the
pitch of the sound.

This looks different in the world of digital audio recordings where algorithms were invented
to decouple the time-scale of audio signals from their pitch. These are typically referred
to as TSM algorithms. But although there exists a large variety of different algorithmic
approaches to the field of TSM of audio recordings, there is no algorithm that produces

TSM

Audio recording New time-axis

Time-scale modified audio recording

Figure 1.1. Basic principle of TSM. TSM algorithms allow for modifying the time-scale of an
audio recording according to a given time-axis.

1

2 CHAPTER 1. INTRODUCTION

artifact-free results robustly. In this thesis we therefore analyze and explain the TSM
of audio signals in general as well as prominent existing algorithms to better understand
what makes TSM difficult and where artifacts originate from. In the next sections we fur-
thermore propose a novel application that heavily relies on TSM to motivate this detailed
analysis.

1.2 Motivating Application

When the first movies were created at the end of the 19th century, they had no soundtrack.
Nevertheless, they were almost always accompanied by musicians to emphasize the images.
Nowadays it is almost impossible to imagine media like movies, computer games, TV
shows, commercials, slide shows or even theater performances being presented without
any audible component. But in the same way in which appropriate music can emphasize
moods and emotions, inappropriate music can decrease the quality of motion pictures
tremendously. Therefore the proper choice of underlaying music is extremely important
in any visual media. But not only the music itself is crucial. For example at a change in
the scenery of a movie the music should adapt to the images, and optimally the change in
the music should be perceived as natural by the audience.

There exist various general approaches for generating soundtracks. The most common one
is the compositorial approach. In a large movie production the music is most commonly
composed, performed and recorded for this specific movie. The soundtrack is tailored
to the story and any change in the scenery can be handled explicitly by the composer.
Although this approach for sure yields the best results, it is extremely expensive since it
involves a massive amount of creative work by the composer. Furthermore the recording
process is labor-intensive and time consuming. Finally the approach is not very flexible.
Once the soundtrack is recorded, greater alterations to the movie are virtually impossible.
For the same reason it is difficult to apply this approach to other media like for example
computer games where no strict time line of events exists. The composer has to design
the music such that it is possible to repeat it over and over again in passages where the
scenery does not change and at the same time offer musical transitions that bridge to the
music for the next passage in the storyline of the game.

An other option is the parametric approach. By parameterizing music in terms of harmony,
tempo, dynamics, instrumentation and further aspects it is theoretically possible to utilize
a synthesizer to produce music that can adapt fast to the shown images by tuning the
given parameters. In a scene of high tension the parameters could for example be set to
produce loud, fast and percussive music while in the next moment change to soft and quiet
music in a scene of relief. Although this approach is inexpensive and flexible it has shown
that music which is completely computer-generated tends to sound aesthetically not very
appealing to human listeners.

We therefore propose a novel data-driven approach to overcome the shortcomings of the
two approaches mentioned above. Our core idea builds on the assumption that nowadays
large music collections that cover a wide range of moods are widely available. From such
collections suitable audio clips that correspond well to the visual scenes can be chosen and
played back while accounting for user specifications. Figure 1.2 visualizes our approach.

1.3. THE CONNECTOR 3

Scene 1 Scene 2

Time

Visual data stream

Audio data stream

Audio 1 Audio 2

Audio 1 Audio 2Transition

Naive approach

Our approach

Current playback position

Figure 1.2. Having a collection audio recordings, the goal is to underlay a visual data stream
with fitting music from this collection such that a transition between two recordings is appealing.
In the naive approach we simply cut the current audio recording at the end of Scene 1 and append
some recording that fits Scene 2. But this leads to abrupt breaks in the music. In our approach
we are looking for an optimal recording in the set of all recording that can be used as underlaying
music for Scene 2 such that we can compute an euphonious transition from the current recording
to the new recording.

The problem is that a simple concatenation of audio recordings does not suffice to create
an aesthetically appealing audio data stream since a change from one audio recording to
the next happens abruptly and may therefore be perceived as unpleasant. The goal is
therefore to create smooth transitions between two audio recordings that are as pleasant
as possible to the ear of the listener.

Blending is a common technique to make the transition between two audio recordings less
abrupt. By overlaying the two audio recordings by a short time and decreasing the volume
of the ending recording until it is finally not perceivable any more while at the same time
increase the volume of the starting recording from silence to the normal volume, a smooth
transitions between the two recordings is created. Nevertheless, even when blending from
one recording to another one, the transition is often still not acceptable. This is usually
due to harmonic and rhythmic differences during the transition phase between the two
recordings.

1.3 The Connector

To overcome those issues and to produce harmonically and rhythmically appealing tran-
sitions we developed a tool, called the Connector. Its main purpose is to connect audio
recordings in a harmonic and rhythmic sensitive way such that the transition between two
audio recordings is not, or only slightly noticeable. Its coarse structure is visualized in Fig-
ure 1.3. Given to the Connector are the currently playing audio recording along with a
region in this audio recording were we want to switch to another recording. This region is
called the transition region. In the first stage, the Connector looks for a region in some
recording in a database that has a similar harmonic progression to the transition region.

4 CHAPTER 1. INTRODUCTION

Database

Audio 1 Audio 2

Transition region

Retreived matchQuery

harmonically
similar

rhythmically
synchronized

TSM

Transition

Audio 1 Audio 2

MATCHING

WARPING

BLENDING

Figure 1.3. The three stages of the Connector.

The goal of this step is to assure that during the transition phase the two recordings that
will be audible at the same time are harmonically related. Having found a match, the
Connector rhythmically synchronizes the transition region with the matched region by
aligning the beat positions of both regions temporally. This is done to avoid a chaotic
sound that would result from overlaying the two regions without any adaptions. To align
the beat positions, the two audio recordings are warped along the time-axis in a non-linear
fashion using TSM algorithms. Since the transition between the two recordings should be
aesthetically appealing it is crucial that the applied TSM algorithm introduces as little
audible artifacts into the audio recordings as possible. At the end of the warping stage the
two regions can be regarded both harmonically similar and rhythmically synchronized. In
the last stage the warped audio recordings are finally blended to finish the transition.

1.4 Contribution

The main contribution of this thesis lies in the detailed analysis of different TSM algorithms
and TSM of audio signals in general. Even though TSM techniques have received a lot of
interest in recent years, non-linear TSM, which plays an essential role in the pipeline of
the Connector, seems to be a topic that is often avoided in the literature. Furthermore
publications in this field tend to have very diverse notations and definitions. This thesis
builds a unified theoretical foundation which allows for understanding TSM algorithms in
detail and also carefully addresses the topic of non-linear TSM.

1.5. THESIS ORGANIZATION 5

Furthermore we developed and analyzed an improved version of a standard TSM algo-
rithm. The quality of this algorithm as well as several other TSM algorithms was evalu-
ated by performing a listening test. The results show that our modified algorithm yields
time-scale modified audio recordings of significantly better quality in many cases than the
standard version of the algorithm.

Finally, as a practical part of this thesis, a first prototype of the Connector as described
in Section 1.3 was implemented in MATLAB.

1.5 Thesis Organization

This thesis is structured as follows. In Chapter 2 we introduce the foundations that are
necessary to work with audio signals on a theoretical level and that are used frequently
throughout this thesis. Chapter 3 gives a detailed introduction to the field of time-scale
modification of audio signals on an abstract level, while Chapter 4 and Chapter 5 are
devoted to popular TSM algorithms. In Chapter 6 we discuss our new TSM algorithm
and explain it in detail. The listening test which we performed to evaluate the quality of
our new algorithm as well as several other TSM algorithms is presented in Chapter 7. We
give a description of the Connector in its current state and all of its stages in Chapter
8 and close this thesis with a brief outline of future work in Chapter 9.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Basic Definitions, Notations and

Tools

The Connector is supposed to be a tool that is capable of producing euphonious tran-
sitions from a currently played audio recording to another. To this end, it has to analyze,
interpret and modify the audio recording that is currently played as well as the audio
recordings in the database. These are tasks that are not easily manageable by a machine
upfront. We first need mathematical formulations of what music, or in general sound, is
and how a machine can work with it. As a start, we mathematically define audio signals
in Section 2.1. Afterwards we focus on the harmonic content of audio signals in Sections
2.2, 2.3 and 2.4.

Note that throughout this chapter, as well as in this whole thesis we closely follow the
notations and definitions of [33].

2.1 Audio Signals

We begin with the most basic object the Connector has to deal with, the audio signal.

Definition 2.1 An audio signal is a function f : R→ R, where the domain R represents
the time-axis and the range R the amplitude of the sound wave. Since all real-world audio
signals are time-limited with a duration D, we define T = [0, D) ⊂ R as the domain of the
time-limited signal and assume f(t) = 0 for t ∈ R\T . With the domain being R, such an
audio signal is also referred to as continuous-time (CT) signal.

To be able to actually process audio signals with a machine, the signal needs to be trans-
formed into a digital representation. To this end we discretize a given CT signal and
therefore turn it into a discrete audio signal.

Definition 2.2 A discrete audio signal, also called discrete-time (DT) signal, is a func-
tion x : Z→ R which is defined on a discrete subset of the temporal domain of a CT signal.
Since the discrete signal is time-limited as well, we analogously define T ′ = [1 : N] ⊂ N.

7

8 CHAPTER 2. BASIC DEFINITIONS, NOTATIONS AND TOOLS

0 1 2 3 4 5

−1

0

1

0 1 2 3 4 5

−1

0

1

(a)

(b)

Figure 2.1. (a) A CT signal. Time is given in seconds. (b) The DT version of the CT signal
from (a) computed by equidistant sampling with a sampling rate of 10 Hz. Time is also given in
seconds.

For x being a discrete audio signal we define length(x) = N . Furthermore we define
x[a : b] for a, b ∈ T ′ and a ≤ b to be the discrete audio signal that is the fragment of x
defined on {z|z ≥ a and z ≤ b}.

Note that in fact the range R of a discrete audio signal is also discretized when converting
a CT signal into a DT signal. Nevertheless we will ignore this detail in the following since
it does not affect our work.

A standard way to convert a CT signal f into a DT signal x is to sample the CT signal at
equidistant points, which is known as equidistant sampling. To this end a fixed sampling
period ps is defined and we compute

x(n) = f(ps · (n− 1)) , (2.1)

for n ∈ Z. The inverse of the sampling period 1
ps

is commonly referred to as the sampling
rate of the DT signal and denoted by fs.

2.2 Pitch Features

Waveforms are the most common representation of audio signals. They simply encode
the air pressure variations that the human ear perceives as sound. Nevertheless, this
representation hides a lot of information. While temporal events like volume variations are
well perceivable in the waveform, it is for example almost impossible to get any information
about the frequency content, and therefore harmonic information about the signal from
the waveform directly. To analyze an audio signal in terms of a certain aspect of sound,
and therefore make this aspect accessible and interpretable for a machine, one first has to
find a way to capture and quantify the desired aspect in the signal in a so called feature.
In the context of the Connector we are especially interested in the harmonic content of
audio signals. A common feature to capture this aspect of sound is the pitch feature. It
assigns to each of the 88 MIDI pitches p = 21 to p = 108 that correspond to the keys of a
standard piano a value that quantifies how present the corresponding tone is in the audio
signal at a certain point in time.

2.3. CHROMA FEATURES 9

To obtain a pitch feature from an audio signal x we first apply a suitable bandpass filter
for each pitch p to x. This filter passes all frequencies around the center frequency of the
corresponding pitch p while rejecting all other frequencies. By combining all 88 filters we
get an array of filters which is called a pitch filter bank. The magnitude response of this
filter bank yields 88 subband signals xp for p ∈ [21 : 108].

Since we would like to analyze the harmonic content of an audio signal at a high temporal
resolution, the audio signal x is typically divided into a sequence of short overlapping
segments,

S = S1, S2, ..., SN , (2.2)

where N is the length of the sequence and it holds that all segments Sn for n ∈ [1 : N] are
of the same length. The final pitch feature is then computed by measuring the short-time
mean square power (STMSP) in each of the subband signals xp within each segment Sn.

STMSP (n, p) =
∑

k∈Sn

|xp(k)|
2 , (2.3)

with n ∈ [1 : N] and p ∈ [21 : 108]. Figure 2.2 shows an example of a pitch feature.

2.3 Chroma Features

The pitch features introduced in the previous section capture the harmonic content of audio
signals quite well. But in the context of the Connector they have a major drawback.
They do not abstract away from the periodic pitch perception of the human auditory
system. For a human, two tones for which one of them is a multiple in frequency of the
other sound similar. We say they have the same “color” or chroma. In western music these
chroma are denoted by C,C♯, D,D♯, E, F, F ♯, G,G♯, A,A♯ and B while adding a number
label in case one wants to refer to a certain tone like A1 = 440 Hz and A2 = 880 Hz.
Therefore two audio recordings that have a similar chroma progression should also have
similar feature sequences. This is not always true for the pitch features.

The idea to overcome this problem is therefore to aggregate all pitches that belong to the
same chroma class in a pitch feature vector. The result is a 12-dimensional feature vector
called a chroma vector or chroma feature. To increase the robustness against differences in
sound intensity or dynamics, the chroma vectors are then usually normalized by replacing
every vector v by

v =
v

‖v‖1
(2.4)

where

‖v‖1 =
12∑

i=1

|v(i)| (2.5)

denotes the ℓ1-norm of v. A sequence of chroma features then expresses the relative energy
distribution of the underlaying signal within the twelve chroma bands. Chroma features

10 CHAPTER 2. BASIC DEFINITIONS, NOTATIONS AND TOOLS

0 1 2 3 4 5 6 7

−1

0

1

0 1 2 3 4 5 6 7

30

40

50

60

70

80

90

100

10

20

30

40

50

60

70

(b)

(a)

Figure 2.2. (a) The waveform of the first 8 seconds of Beethoven’s 5th Symphony in an orchestral
version. Time is given in seconds. (b) The pitch feature computed from (a). The segments that
were used to compute the STMSP have a length of 200 ms and overlap by 100 ms.

2.4. BEAT-SYNCHRONOUS CHROMA FEATURES 11

0 1 2 3 4 5 6 7

−1

0

1

0 1 2 3 4 5 6 7
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

0.2

0.4

0.6

0.8

(b)

(a)

Figure 2.3. (a) The waveform of the first 8 seconds of Beethoven’s 5th Symphony in an orchestral
version. Time is given in seconds. (b) The chromagram computed from the pitch feature visualized
in Figure 2.2.

are usually visualized in a so called chromagram. See Figure 2.3 for an example.

2.4 Beat-Synchronous Chroma Features

The chroma features introduced in Section 2.3 still have a drawback. Since they are
computed on segments of fixed length, the boundaries of those segments usually do not
coincide with musically meaningful boundaries. Time-adaptive features are a solution to
overcome this problem. The main idea of time-adaptive features is to abstract away from
the actual timing information of the underlying audio signal and compute the features not
on fixed length intervals but on musically meaningful segments [44]. By choosing those
segments to be the intervals between two beat positions in an audio signal during the
computation of the chroma features, we get beat-synchronous chroma features. See Figure
2.4 for an example.

Intuitively, the beat-synchronous chroma features are computed by computing the average
of all fixed-length feature vectors within two beat positions of the pitch feature represen-
tation. This pitch feature is then transformed into a chroma feature in the standard
way. For further details about the computation of beat-synchronous chroma features and
time-adaptive features in general we refer to [44].

12 CHAPTER 2. BASIC DEFINITIONS, NOTATIONS AND TOOLS

1 2 3 4 5 6 7 8
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

0.2

0.4

0.6

0.8

10 20 30 40 50 60
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6
−1

0

1(a)

(b)

(c)

Figure 2.4. (a) The waveform of the first two measures of the song “let it be” from the Beatles.
Time is given in seconds and the beat positions are indicated by red bars. (b) The chromagram
of the audio signal from (a). The features were computed at a fixed rate of 10 Hz. Again the beat
positions are indicated by red bars. Note that the note boundaries are blurred due to the fixed
length segmentation. (c) The beat-synchronous chromagram computed from the signal from (a)
and the beat positions.

Chapter 3

Time-Scale Modification

Time-scale modification is the task of altering the time-scale of audio signals, that means
making the tempo of audio recordings faster or slower. In the field of digital signal pro-
cessing there exists a large variety of different algorithms that are designed to fulfill this
task. These algorithms are typically referred to as time-scale modification algorithms, or
abbreviated by TSM algorithms. While we discuss existing algorithms in Chapters 4, 5
and 6 we will address the topic of time-scale modification of DT-audio signals in general
in this chapter. In Section 3.1 we give an introduction to the field of time-scaling of audio
signals. Related work is introduced in Section 3.2 and finally basic definitions as well as
technical remarks are given in 3.3.

3.1 Introduction

The task of manipulating the time-scale of an audio signal is a frequently occurring one.
For example in the field of DJing it is often important to have multiple audio clips which
share the same tempo. A DJ then creates whole songs by overlaying and sequencing those
clips. For example he could use a drum clip, a bass clip, a melody clip and some effect
clips, all played at the same time. But if the drums, the bass and the melody are not on
the same speed level, the result will sound chaotic. He therefore has to take care that the
tempos of all simultaneously played clips are the same. But most often audio clips are
not available in different versions for different tempos. The solution is to manipulate the
time-scale of all clips such that they are all on the same speed level.

Another scenario are commercials where an advertising text needs to fit into a predefined
time frame of mostly 30 or 60 seconds. Since it is extremely difficult for a voice actor to
meet this constraint exactly, the text is most commonly recorded and the speed of the
audio recording is adjusted afterwards such that the length of the recording matches the
given time. Furthermore, research has shown that the human brain works most efficiently
when listening to spoken text if the speed of the speaker is about 200 - 300 words per
minute [15]. This is the average reading speed of an adult. Unfortunately, the average
rate of speech is in the neighborhood of 100 - 150 words per minute. This fact is used
frequently in commercials since by speeding up the recorded advertising text one is able

13

14 CHAPTER 3. TIME-SCALE MODIFICATION

to give more information in less time and the faster text is even easier to process by the
human brain.

These two applications are instances of problems where a simple linear time-scale modifi-
cation suffices. For this purpose we can see a TSM algorithm as a method that receives
an audio signal along with some descriptor which describes the intended time-scale mod-
ification, in this case a constant time-stretch factor. The time-stretch factor determines
how the time axis of the given audio should be rescaled for the output. For example a
time-stretch factor of 2 should yield an audio signal that is twice the length of the audio
signal given to the algorithm. The straightforward approach to realize such a time-scale
modification of an audio signal is to either stretch or compress the waveform of the given
audio signal, depending on the time-stretch factor. This is done by resampling the given
signal but still interpreting it as a signal sampled at the old sampling rate. Algorithm 1
shows how the resampling of a signal can be computed. Unfortunately, this simple ap-
proach yields unacceptable results for most applications. When resampling the signal one
does not only change the time-scale, but also the pitch-scale of the signal at the same
rate (see Figure 3.1). The effect is the same as when playing a record or a tape recording
at a higher or lower speed than it is intended to be played. This might be acceptable
for some kinds of audio signals with non-harmonic content, like for example drum beats,
where slight changes in the pitch-scale are not directly audible as such. But, for exam-
ple, for audio signals containing human voice this leads to the so called chipmunk effect1

which makes the human voice sound completely unnatural and alienated by heightening
or lowering its pitch. In the context of the Connector, the resampling approach is even
not applicable at all since we want to manipulate the time-scale of audio signals that are
similar in the harmonic sense. A pitch shift destroys this similarity completely.

Algorithm 1: Resampling

Data: DT signal x sampled at a sampling rate fs, time-stretch factor t.
Result: DT signal y that is a resampled version of x.
begin

z ←− interpolate x to a CT signal;
y ←− sample z at a rate of fs · t;

We therefore need TSM algorithms that are capable of changing the time-scale of an audio
signal without altering its pitch-scale. In the optimal case these algorithms should produce
an audio signal that sounds as if the content of the signal was produced on a different
time-scale. For example for a musical performance the output should sound as if all the
musicians just played at a different tempo.

Historically, the next step towards this goal was to invent the so called Variable Speech
Compression [15]. Having an audio signal, this technique just takes small segments from
the signal at equidistant positions and either removes them or doubles them. Depending
on the length of those segments and whether they are removed or doubled, the audio signal
is more or less shortened or lengthened. This technique was for example implemented in
cassette recorders. Here, the tape was first played on a higher or lower speed, leading

1http://en.wikipedia.org/wiki/Alvin_and_the_Chipmunks, last consulted in October 2011

http://en.wikipedia.org/wiki/Alvin_and_the_Chipmunks

3.2. RELATED WORK 15

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

x

y

Figure 3.1. The sinusoidal signal x is sampled at a rate of 22050 Hz and has a frequency of
1 Hz (the time on the x-axis is given in seconds). By resampling the signal to 44100 Hz we get
the signal y. The length of y is double the length of the signal x, but at the same time also the
wavelength of x is doubled. Therefore the frequency of the sinusoidal signal y is 0.5 Hz. It is
not possible to change only the duration of a signal without changing the pitch and vice versa by
purely resampling the signal.

to time-scaled, but pitched signals. Then small segments were recorded from the tape,
resampled to pitch them back to their initial pitch and then fed to the output, while either
skipping certain parts of the tape when increasing the speed or doubling the resampled
segments when slowing the audio down. The quality of time-scaled audio signals produced
by variable speech compression was rather good, especially when manipulating the time-
scale of speech recordings. But stuttering artifacts were always audible and the approach
was therefore far away from the goal of artifact free time-scale modification. Nevertheless,
this technique has a lot in common with one of the first digital TSM algorithms, the OLA
(Overlap and Add) technique which we discuss in Chapter 4.

An interesting fact is that pitch-scale modification, which is the task of changing only
the pitch of an audio signal while the length of the signal is preserved, is actually the
same as time-scale modification. While at the first glance these problems seem unrelated,
solving one of them also solves the other. Assume one has a perfect TSM algorithm that
is capable of time-scaling any audio signal without introducing artifacts, but the task is
to lower the pitch of an audio signal without altering the length. One starts by using
the TSM algorithm to shorten the duration of the audio signal without altering its pitch.
Afterwards, one uses the naive resampling approach to stretch the shortened signal to its
initial length again and at the same time lower its pitch. This results in an audio signal,
that has the same length as the initial signal but that is lowered on the pitch-scale. The
heightening of the pitch-scale works analogously.

3.2 Related Work

A lot of work has been done and is still ongoing in the field of time-scale modification
of audio signals. The Variable Speech Compression [15] that was briefly introduced in
Section 3.1 was one of the first contributions to this field. For modern TSM algorithms
there exist in principle two main approaches: They either work in the time-domain or in

16 CHAPTER 3. TIME-SCALE MODIFICATION

the frequency-domain.

Algorithms working in the time-domain try, similarly to the Variable Speech Compression,
to take small segments from specific positions in the input audio signal and resynthesize
them to a new, time-scale modified version of the input audio signal. Most of these al-
gorithms follow a basic scheme, the so called OLA (Overlap and Add) technique. This
technique is presented in [36] and is also discussed in detail in Chapter 4. Many high
quality TSM algorithms originate from this technique. Examples are the WSOLA algo-
rithm (Wave Similarity Overlap and Add) [43], which is also discussed in Chapter 4, the
SOLA algorithm (Synchronized Overlap and Add) [37] and the PSOLA algorithm (Pitch-
Synchronous Overlap and Add)[32]. These algorithms often suffer from stuttering artifacts
at transient regions in audio signals. Therefore the quality of the results can be improved
by giving these transient regions a specialized treatment. An approach to improve the
quality of WSOLA can be found in [19] and our own approach is discussed in Chapter 6.

The other family of TSM algorithms works in the frequency-domain. These algorithms
approach the problem by constructing frequency spectra that correspond to a time-scaled
version of the input audio signal. By transforming these spectra back to the time-domain
they produce the output audio signal. The most prominent algorithm of this family is the
Phase Vocoder [14, 1, 9, 10, 42], which is discussed in detail in Chapter 5.

There exist also some hybrid approaches that work partially in the time-, and partially in
the frequency domain. Such algorithms are presented in [25, 18, 11]. A recent and very
intersting approach which combines WSOLA and the Phase Vocoder can be found in [31].

3.3 General Definitions and Remarks

In the context of the Connector, as well as in many other applications it is not sufficient
to have a TSM algorithm that only allows for a linear time-scale modification. Often it
is necessary to scale the time of an audio signal in a non-linear fashion. For example in
the Connector we want to synchronize the beats of two audio signals. But those beat
positions do not need to be equidistant. In fact, this is not the case in most musical
pieces performed by humans. Not only that unskilled musicians tend to miss the correct
beat position, but also professional musicians often play notes a little bit before or after
the beat (pushing/lay back) to create certain moods in their music. This is referred to
as tempo rubato [23]. Furthermore agogics like ritardando or accelerando (get slower/get
faster) make musicians change the speed of the played piece and therefore the temporal
distance between beats. In such cases a non-linear time-scale modification is necessary to
synchronize the beat positions of two audio recordings.

Modern TSM algorithms are normally capable of handling non-linear time-scale modifi-
cations. To this end they get a time-stretch function τ along with the input signal as a
descriptor of the intended time-scale manipulation. Intuitively a signal f and a signal g
which is a time-scale modified version of f with respect to the time-stretch function τ
should then satisfy the formula

∀t ∈ [0, T) : g(τ(t)) = f(t) , (3.1)

3.3. GENERAL DEFINITIONS AND REMARKS 17

where T is the duration of f . This formula states that every single point in time of signal
f is mapped to a point in time in g by the time-stretch function τ . Unfortunately the
formula does not specify what we intended. Figure 3.2 shows an example of a signal, a
time-stretch function and a time-scaled version of the signal which satisfy the formula. The
problem is that in an audio signal, information about time, pitch, timbre and many other
aspects of sound are mingled together. Formula 3.1 specifies a time-scale manipulation
that manipulates all properties of a signal at once which leads to the same artifacts as
when speeding up or slowing down the spin of a record according to the time-stretch
function while playing it, or, in the digital world, the resampling approach discussed in
Section 3.1. But our goal is to manipulate only the time axis of an audio signal, without
changing any other properties. We therefore have two seemingly contradicting goals. On
the one hand we want to distort the audio signal temporally on a global scale to achieve the
intended time-scale modification, but on the other hand we want to preserve it locally to
maintain aspects like pitch and timbre. To define this property and therefore to overcome
the shortcomings of Equation 3.1 we need a better way to talk about corresponding points
in time in two signals. We are looking for a relation that allows us to compare the local
content of two signals at given points in time. Defining such a relation is difficult since it is
not even easy to explain what exactly a point in time in an audio signal is. When we break
it down to the waveform, it is just the displacement in the air pressure at the given time,
measured and quantized in the amplitude of the recorded signal. But this information
is not enough to preserve aspects like pitch and timbre of the signal when time-scale
modifying it. The problem is that not a single point in time makes the difference in air
pressure that the human ear perceives as sound, but a sequence of different air pressure
levels does. It is therefore necessary that the relation we are looking for does not connect
pure points in time, but short time segments.

We now first give the definition of the term time-stretch function.

Definition 3.1 A Time-Stretch Function τ for a CT signal f is a strictly monotonously
increasing function τ : [0, T)→ R where T is the duration of f . The domain of τ represents
the time-axis of f and the range the time-axis of a time-scale modified version of f .

To be able to give at least an intuitive definition of what it means that an audio signal f
is time-scale modified with respect to a time-stretch function τ we introduce a relation ≈
and give it the vague meaning of “similar to”. Note that finding an operational definition
of this relation that describes the desired property perfectly is the same as solving the
TSM problem artifact free since we could just use the definition to compute the output
signal. Therefore building a TSM algorithm is somehow similar to approach the problem
of defining this relation.

Definition 3.2 A CT window function w of size ℓ is a function w : R → R such that
w(t) > 0 for all t ∈ T = [− ℓ

2 ,
ℓ
2) and w(t) = 0 for t ∈ R\T .

Definition 3.3 A CT signal g is a time-scale modified version of a CT signal f with
respect to τ if

∀t ∈ [0, T) : g(τ(t) + s) · w(s) ≈ f(t+ s) · w(s) ,

where T is the duration of the signal f , w is a window function of window size ℓ and
s ∈ (− ℓ

2 ,
ℓ
2).

18 CHAPTER 3. TIME-SCALE MODIFICATION

Note that in the above definition the relation ≈ relates windowed segments of the two
signals and not single points in time.

Since we want to argue mainly about digital signals we need to adapt the definition to DT
signals.

Definition 3.4 Let x : [1 : N] → R be a DT signal and τ a time-stretch function for
a continous version of x. A Discretized Time-Stretch Function τ̂ of τ for x is a strictly
monotonously increasing function τ̂ : A → [1 : M] where A ⊆ [1 : N] 1, N ∈ A and M is
the length of the time-scale modified signal and it holds that

(i) τ̂(1) = 1

(ii) τ̂(N) =M

(iii) ∀n ∈ A\{1, N} : τ̂(n) = [τ([n]time)]sample

The functions used in (iii) are defined as [n]time = n · ps and [t]sample = round(tps) where
ps is the sampling period of x.

A discretized time-stretch function τ̂ does not need to be defined for all sample positions of
a DT signal x. Nevertheless this is often necessary. We therefore introduce the interpolated
time-stretch function τ ′.

Definition 3.5 An Interpolated Time-Stretch Function τ ′ of a discretized time-stretch
function τ̂ for a DT signal x is a monotonously increasing function τ ′ : [1 : N]→ [1 :M]
where N is the length of x and M is the length of the time-scale modified version of x.
The function τ ′ is computed from τ̂ by discrete linear interpolation.

When defining TSM algorithms it is also often necessary to invert the time-stretch function.
In the discrete world we therefore have to overcome the problem that the interpolated
time-stretch function τ ′ is not necessarily strictly monotonously increasing. We define the
inverse of an interpolated time-stretch function as follows.

Definition 3.6 An Inverted Interpolated Time-Stretch Function τ ′−1 of an interpolated
time-stretch function τ ′ for a DT signal x is a monotonously increasing function τ ′−1 :
[1 :M]→ [1 : N] where N is the length of x and M is the length of the time-scale modified
version of x. The function τ ′−1 is computed from τ̂−1 by discrete linear interpolation.

Finally we adapt Definition 3.3 to the discrete world.

Definition 3.7 A DT window function w of size L is a function w : Z → R such that
w(m) > 0 for all m ∈M = [−⌊L−1

2 ⌋ : ⌊
L
2 ⌋] and w(m) = 0 for m ∈ Z\M .

Definition 3.8 A DT signal y is a time-scale modified version of a DT signal x with
respect to τ ′ if

∀n ∈ [1 : length(x)] : y(τ ′(n) +m) · w(m) ≈ x(n+m) · w(m) ,

where w is a window function of size L and m ∈ [−⌊L−1
2 ⌋ : ⌊

L
2 ⌋].

3.3. GENERAL DEFINITIONS AND REMARKS 19

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

0 1 2 3 4 5 6 7 8 910
0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

(a) (b)

(c)

Figure 3.2. (a) A sinusoidal signal with frequency 1 Hz and a duration of 10 seconds. (b)
The non-linear time-stretch function τ . (c) The time-scale modified resulting signal that satisfies
Formula 3.1. Note that this signal is not the intended result since the frequency of the sinusoid
changes over time and therefore the pitch of the signal changes as well. Note further that the
intended result is exactly (a) again. This is because our input signal is essentially one tone lasting
10 seconds. The time-stretch function τ suggests that the output signal should also have a length
of 10 seconds. Since we do not want to alter the pitch of the signal in any way the intended output
is exactly the input again.

It will always be clear from the context wether we mean the continuous time-stretch
function τ , the discretized version τ̂ or the interpolated time-stretch function τ ′ and will
therefore only use the symbol τ for the sake of simplicity.

20 CHAPTER 3. TIME-SCALE MODIFICATION

Chapter 4

WSOLA

WSOLA (Wave Similarity Overlap and Add) is a time-domain TSM algorithm from the
family of OLA algorithms and was first introduced in [43]. In this section we discuss it
in detail. We first introduce the basic OLA technique in Section 4.1 and afterwards the
improvements that were done in WSOLA in Section 4.2. Finally we briefly have a look at
occurring artifacts in Section 4.3.

4.1 OLA

The basic OLA technique is very simple and follows roughly the ideas of the Variable
Speech Compression. The main idea of the algorithm is to cut out small segments from
the input audio and concatenate them by crossfading from one segment to the next to
achieve the desired time-scale modification. To be able to describe the technique properly
we first need to introduce some definitions and remarks.

Remark 4.1 We will use window functions massively throughout this chapter. For the
sake of convenience we will therefore denote the size of a window function w by wℓ.

Definition 4.1 For x being a DT signal of length N and w being a window function of
size N , we define

x · w

to be the pointwise multiplication of x and w.

Definition 4.2 A windowed audio segment z from an DT signal x using the window
function w around window position p is defined as

z = x[bpw : epw] · w ,

where bpw = p − ⌊wℓ−1
2 ⌋ is the beginning of the windowed audio segment z in x and epw =

p+ ⌊wℓ2 ⌋ is the end of the windowed audio segment z in x.

21

22 CHAPTER 4. WSOLA

Definition 4.3 Let w be a window function. In a sequence of windows in which all
windows can be described by a shifted version of w and in which all windows are overlapping
by a constant factor o we call the distance between the centers of two adjacent windows
the standard window offset ηwo and compute it as

ηwo = (1− o) · wℓ .

Given to the OLA algorithm are an input signal x, an overlap factor o, a window function
w and a time-stretch function τ . The goal of the algorithm is to produce an audio signal
y that is a time-scale modified version of x with respect to τ . The OLA technique realizes
this task by copying audio segments that are windowed using w from the input signal x
to the output signal y. It is important that the size of the used window function w is
longer than one pitch period of the lowest fundamental frequency contained in the input
signal x, since a windowed audio segment from x using w should contain harmonically
meaningful content. In the output these windowed audio segments are overlapped by the
constant overlap factor o and added up, which yields a crossfade from one segment to the
next. This procedure is the origin of the name of the technique (Overlap and Add).

The first step of the OLA technique is to generate a vector of output window positions γ.
This vector specifies positions where the windowed audio segments from the input will be
placed in the output. It is fully determined by the length of the output signal y (which by
itself is given by the time-stretch function τ), the length of the window function wℓ and
the overlap factor o. This is because it specifies the positions of a sequence of windows
that are all overlapping by the same factor. Therefore all entries in γ are equidistant and
depend only on wℓ and o. The length of γ is determined by the length of y since no window
position in γ may exceed the length of y.

Now we can compute γ by

(i) length(γ) = ⌈ length(y)ηwo
⌉

(ii) γ(1) = 1
(iii) γ(n) = γ(n− 1) + ηwo for n ∈ [2 : length(γ)]

(4.1)

One can now imagine the output signal y as a sequence of slots that need to be filled with
windowed audio segments from the input. The positions of these slots are all equidistant
and given by γ. To fill these slots with windowed audio segments such that the output
signal y is a time-scale modified version of x with respect to the time-stretch function τ ,
we construct a vector of input window positions σ which is dependent on τ . It is computed
by

σ(n) = τ−1(γ(n)) (4.2)

for all n ∈ [1 : length(γ)]. Every slot in y specified by γ(n) is then filled with the windowed
audio segment at window position σ(n). Figure 4.1 gives a visual example of how the OLA
technique works.

4.1. OLA 23

0

1

In
pu

t A
ud

io

0

1

O
ut

pu
t A

ud
io

σ(1) σ(2) σ(3) σ(4) σ(5)

γ(1) γ(2) γ(3) γ(4) γ(5)

ηwo

Figure 4.1. Schematic mechanics of OLA. Signals are symbolized by blue bars. The input signal
is windowed at specified positions σ. The resulting windowed segments are then overlapped by a
constant factor o (it holds that γ(n+ 1)− γ(n) is constant, in this case the overlap factor o is 0.5
and the standard window offset ηwo therefore is half the window size), added up and copied to the
output. The example shows how OLA produces a version of the input signal that is speeded up by
a constant factor (the windows in the input are sampled equidistantly along the input signal and
σ(n+ 1)− σ(n) > γ(n+ 1)− γ(n)).

Mathematically we can describe the synthesis of y as

y(n) =

length(σ)∑
k=1

w(n− γ(k)) · x(n− γ(k) + σ(k))

length(σ)∑
k=1

w(n− γ(k))

. (4.3)

Intuitively Equation 4.3 simply computes the sum of all windowed audio segments from
the input signal x that contribute to sample position n in the output signal y. Note that
the denominator is used to normalize the output y at position n in case the overlapping
windows at position n in the output do not add up to 1. This normalization is important
to avoid amplitude modulations in the output signal y (see Figure 4.2 for an example).
In OLA techniques, the overlap factor o is typically set to 0.5 and the window function w
usually describes a Hann-window. With these settings the denominator of Equation 4.3
is always 1.

From Equation 4.3 we can derive Algorithm 2. Note that the very last step of the algorithm
applies the discussed normalization to the output signal y and is obsolete in case o = 0.5
and w being a Hann-window.

By extracting and rearranging small segments with harmonically meaningful content from
the input audio x, the OLA technique tries to give the relation ≈ that we introduced in
Chapter 3 the meaning of “harmonically similar to”. The Short Time Fourier Transform

24 CHAPTER 4. WSOLA

0

1

0

0.5

1

1.5

2

0

1

0

0.5

1

1.5

2(a)

(b)

(c)

(d)

Figure 4.2. (a) and (b) The Hann-windows in (b) are overlapped by an overlap factor of
o = 0.5. The plot in (a) shows the pointwise addition of all windows. The summed values are
constantly equal to 1. (c) and (d) The Hann-windows in (d) are overlapped by an overlap factor
of o = 7

10 . The plot in (c) shows the pointwise addition of all windows. One can observe that
summed values are not constant. Note that the function plots shown in (a) and (c) describe exactly
the denominator of Equation 4.3 if we assume that w is the used Hann-window function and the
window positions resulting from the overlap factors are given in a vector γ.

Algorithm 2: OLA

Data: DT signal x, window function w, overlap factor o, time-stretch function τ .
Result: DT y that is a time-scale modified version of x.
begin

/* Compute γ */

γ(1) = 1;

for i← 2 to ⌈ length(y)ηwo
⌉ do

γ(i)←− γ(i− 1) + ηwo ;

/* Compute σ */

for i← 1 to length(γ) do
σ(i)←− τ−1(γ(i));

/* Overlap and Add */

for j ← 1 to length(σ) do

frame←− x[b
σ(j)
w : e

σ(j)
w] · w;

y[b
γ(j)
w : e

γ(j)
w]←− y[b

γ(j)
w : e

γ(j)
w] + frame;

/* Adjust possible amplitude modulations */

y ←− adjustAmplitude(y, w, o)

4.2. IMPROVEMENTS TO OLA - THE WSOLA ALGORITHM 25

[26] is a tool to analyze the frequency content of a DT signal. It is defined by

X(t, k) =
∑

n∈Z

x(t+ n) · w(n) · e−
2·π·i·k·n

N , (4.4)

where N is the size of the discrete Fourier Transform, w is a window function of size N , t
is the time given in samples and k is the index of the frequency bin with center frequency
2·π·k
N . Let Xν be defined as

Xν = (X(ν(1), ·), X(ν(2), ·), ..., X(ν(Z), ·)) , (4.5)

where ν is some vector of sample positions of length Z. We can therefore describe the
instantiation of ≈ that OLA is designed to fulfill as

∀n ∈ [1 : length(x)] : y(τ(n) +m) · w(m) ≈ x(n+m) · w(m) :⇔
Yν ≈LS Xτ−1(ν)

(4.6)

where ≈LS means “close to” in the least-squares sense, w is a window function of size L
and m ∈ [−⌊L−1

2 ⌋ : ⌊
L
2 ⌋]. Equation 4.6 defines that the harmonic content of the input and

the output signal have to be similar at a given set of pairs of points in time
((
ν(1), τ−1(ν(1))

)
,
(
ν(2), τ−1(ν(2))

)
, ...,

(
ν(Z), τ−1(ν(Z))

))
, (4.7)

where the first entry of a pair specifies a point in time in the output signal and the second
entry a point in time in the input signal. If we instantiate ν with γ, OLA fulfills this
definition by design since the window positions in OLA are chosen exactly this way (recall
that we calculated σ as σ(n) = τ−1(γ(n)).

The quality of audio signals created with the OLA technique is acceptable as long as
the content of the signal is of a non-harmonic nature like for example speech. But when
it comes to the time-scaling of signals with harmonic content, like for example music
recordings, the technique introduces a lot of modulation artifacts. These artifacts result
from cancellation effects that occur when the phases of the fundamental frequencies of two
overlapping windows in the output do not match. This also introduces most certainly phase
jumps (see Figure 4.3) which then lead to a dissonant sound of the output signal. This is
of course not acceptable in most scenarios where music should be time-scale manipulated.
The reason for the occurring artifacts is that the instantiation of ≈ described in Equation
4.6 which OLA fulfills is not sensitive to the phase relationships existing in the the input
signal x. It is therefore necessary to revise this definition.

4.2 Improvements to OLA - The WSOLA Algorithm

The problem with basic OLA is that the technique is not sensitive to the input signal itself.
It just copies windowed audio segments from fixed positions in the input audio signal to
fixed positions in the output audio signal. The underlying signal has no influence on the

26 CHAPTER 4. WSOLA

−1

0

1

−1

0

1

x(n)

y(n)

Figure 4.3. The input signal x is a simple sinusoid. The signal is stretched using the OLA
technique by a factor of 2. OLA is not capable of maintaining the structure of x and introduces
modulation and phase jump artifacts into the output signal y.

algorithm at all. Admittedly the frequency content is maintained locally, but so are the
phases of the copied segments. When overlapping those segments, artifacts are introduced
in case that the phases do not match. The main idea of high quality TSM algorithms
is therefore to keep only the magnitude spectra similar locally while taking care that no
new phase jumps are introduced (optimally phase jumps that existed in the input signal
x should persist in the output signal y) instead of maintaining the similarity of the full
Fourier spectra (recall that a Fourier spectrum can be divided into a magnitude spectrum
and a phase spectrum since a Fourier spectrum is a vector of complex numbers). We
can therefore define a new instantiation of ≈ which most modern TSM algorithms aim to
fulfill.

∀n ∈ [1 : length(x)] : y(τ(n) +m) · w(m) ≈ x(n+m) · w(m) :⇔
(i) |Yν | ≈LS |Xτ−1(ν)|
(ii) No new phase jumps are introduced in y

(4.8)

where ν is some vector of samplepositions in y, w is a window function of size L and
m ∈ [−⌊L−1

2 ⌋ : ⌊
L
2 ⌋].

In OLA, the artifacts mainly result from discontinuities in the phase of the fundamental
frequency of the signal. The basic idea to overcome this issue in most time-domain TSM
algorithms is to give the algorithm some flexibility when it comes to the arrangement
of the windows such that the fundamental frequency is maintained as well as possible.
WSOLA therefore introduces a position tolerance ∆max for the input window positions
specified by σ and therefore relaxes the time-stretch function τ . But even though WSOLA
therefore deviates from the given time-stretch function τ , it yields results of much better
quality since audio artifacts are reduced significantly and the tiny deviations from τ can
be neglected in practice. For an example compare Figure 4.3 to Figure 4.4.

We define our new input window position vector as

σrelaxed(k) = σ(k) + ∆k , (4.9)

where k ∈ [1 : length(σ)] and ∆k ∈ [−∆max : ∆max]. The WSOLA synthesis equation

4.2. IMPROVEMENTS TO OLA - THE WSOLA ALGORITHM 27

−1

0

1

−1

0

1

x(n)

y(n)

Figure 4.4. The same input signal as in Figure 4.3 is stretched by a factor of 2 using the WSOLA
technique. WSOLA is able to maintain the sinusoidal structure of the input signal.

In
pu

t A
ud

io
O

ut
pu

t A
ud

io

σ(k − 1) + ∆k−1
σ′(k − 1) σ(k) σ′(k)

∆k

∆max

ηwo

maximal similar

γ(k − 1) γ(k)

Figure 4.5. One iteration of the WSOLA algorithm. Like in Figure 4.1 signals are symbolized by
blue bars. The windowed audio segment around σ(k − 1) is copied to the output. WSOLA now
finds an offset ∆k ∈ [−∆max : ∆max] (the borders of the tolerance region are indicated by green
lines) for the next window position σ(k) such that the windowed audio segment around σ(k) +∆k

is maximal similar to the windowed audio segment around the natural progression σ′(k−1). After
having found the offset ∆k the windowed audio segment around σ(k)+∆k is copied to the output
and the process is repeated for the next input window position. Note that for the sake of clarity
the input window positions are spaced very far apart in contrast to Figure 4.1.

therefore becomes

y(n) =

length(σ)∑
k=1

w(n− γ(k)) · x(n− γ(k) + σ(k) + ∆k)

length(σ)∑
k=1

w(n− γ(k))

. (4.10)

28 CHAPTER 4. WSOLA

It remains to show how the ∆k are found. Figure 4.5 visualizes the process while it is
explained in detail in the following. Remember that we want to choose the input window
positions such that the phase of the fundamental frequency of the input signal is preserved
as good as possible. In the optimal case we find an offset ∆k such that when overlapping
the windowed audio segment around σ(k) + ∆k with the windowed audio segment at
σ(k − 1) + ∆k−1 we have no cancellation effects at all. Unfortunately, this is in general
only the case if

σ(k) + ∆k = σ(k − 1) + ∆k−1 + ηwo . (4.11)

In this scenario the distance between the two input window positions is the standard
window offset ηwo . This is by design of WSOLA also the distance between the centers of
overlapping windowed audio segments in the output. The overlapping parts of the two
windowed audio segments in the output therefore have exactly the same phase since they
origin from exactly the same segment in the input signal. We therefore call the sample
position σ(k − 1) + ∆k−1 + ηwo the natural progression σ′(k − 1) of the sample position
σ(k − 1) + ∆k−1 and generally define it by

σ′(k) = σ(k) + ∆k + ηwo . (4.12)

Note that in case Equation 4.11 holds for all k ∈ [1 : length(σ)] this indicates a time-stretch
function that is the identity and therefore a global time-stretch factor of 1. In case the
time-stretch function τ is not the identity, the natural progression of σ(k− 1)+∆k−1 will
most probably not lie in the tolerance region [σ(k)−∆max : σ(k)+∆max]. Therefore we are
looking for an offset ∆k ∈ [−∆max : ∆max] such that the windowed audio segment around
σ(k) + ∆k is as similar as possible to the windowed audio segment around the natural
progression of σ(k − 1) + ∆k−1. Note that here the term similar indeed means pointwise
similarity. This offset can therefore be found efficiently by using the cross-correlation
measure.

The cross-correlation for two DT signals x and y is defined by

(x ∗ y)(n) =
∞∑

m=−∞

x̄(m) · y(n+m) , (4.13)

where x̄ is the complex conjugate of x. Intuitively the measure shifts the signal y by n
samples and computes the sum of the product of x and the shifted y. If a shifted version
of y is similar to x, then positive and negative amplitudes of the two signals are roughly
aligned which yields high values for the product of the two signals and therefore a high
value of the sum. In contrary, if x is not similar to the shifted version of y, positive and
negative amplitudes will cancel out to a high extend and therefore leave the sum of the
products small. A peak in the cross-correlation at position n therefore indicates that when
shifting the signal y by −n, the overlapping parts of the signals x and y can be considered
similar. In the context of WSOLA we can apply this measure as follows. Having the last
input window position fixed at σ(k − 1) + ∆k−1 (∆1 is always 0, therefore there always
exists a k such that the (k − 1)th window position is already fixed) we are now looking
for the ∆k such that the windowed audio segments around σ′(k − 1) and σ(k) + ∆k are
as similar as possible. In other words we are looking for an offset ∆k ∈ [−∆max : ∆max]

such that x[b
σ′(k−1)
w : e

σ′(k−1)
w] is as similar as possible to a subsegment of length wℓ in

4.3. ARTIFACTS 29

σ(k)
∆k

∆max wℓ ∆max

σ′(k − 1)(a)

(b)

(c)

Figure 4.6. (a) The audio segment around the natural progression of σ(k − 1) + ∆k−1. We can

write it as x[b
σ′(k−1)
w : e

σ′(k−1)
w]. The position σ(k − 1) + ∆k−1 is the last fixed input window

position. (b) The segment x[b
σ(k)
w −∆max : e

σ(k)
w +∆max]. In this segment we are looking for a

subsegment of length wℓ that is as similar to the segment from (a) as possible. This subsegment,
found using the cross-correlation from (c), is marked in red.(c) The cross-correlation of the two
segments. Picking the highest peak from the cross-correlation yields the offset of the segment from
(a) to the segment from (b) such that they are as similar as possible. From this offset we can
compute ∆k.

x[b
σ(k)
w −∆max : e

σ(k)
w +∆max]. We now can simply compute the cross-correlation of those

two audio segments. Picking the maximizing index of the cross-correlation yields an offset,
and therefore an ∆k, that yields the intended similarity. Figure 4.6 visualizes this process.

Note that the cross-correlation is similar in nature to the convolution and can therefore
be computed efficiently in the frequency domain exploiting that

x̂ ∗ y = x̂ · ŷ , (4.14)

where ẑ is the Fourier spectrum of the signal z.

By using the cross-correlation measure we can finally construct the iterative WSOLA
algorithm (Algorithm 3). Figure 4.5 visualizes one iteration of WSOLA.

4.3 Artifacts

The most typical artifacts occurring in audio signals that were produced by WSOLA
are stuttering artifacts. Most often they are audible at transient regions in an audio
signal. Transients are very short, noise-like parts in audio signals that typically originate
from instrument onsets like for example the stroke of a guitar string or a drum hit. At

30 CHAPTER 4. WSOLA

Algorithm 3: WSOLA

Data: DT signal x, window function w, overlap factor o, time-stretch function τ ,
window position tolerance ∆max.

Result: DT y that is a time-scale modified version of x.
begin

/* Compute γ */

γ(1) = 1;

for i← 2 to ⌈ length(y)ηwo
⌉ do

γ(i)←− γ(i− 1) + ηwo ;

/* Compute σ */

for i← 1 to length(γ) do
σ(i)←− τ−1(γ(i));

∆1 ←− 0;
for k ← 2 to length(σ) do

/* Overlap and Add */

frame←− x[b
σ(k−1)+∆k−1
w : e

σ(k)+∆k
w] · w;

y[b
γ(k−1)
w : e

γ(k−1)
w]←− y[b

γ(k−1)
w : e

γ(k−1)
w] + frame;

/* Find next offset */

σ′(k − 1)←− σ(k − 1) + ∆k−1 + ηwo ;

frameAdj ←− x[b
σ′(k−1)
w : e

σ′(k−1)
w];

frameNext←− x[b
σ(k)
w −∆max : e

σ(k)
w +∆max]

∆k ← getOffsetViaCrossCorrelation(frameAdj,frameNext);

/* Adjust possible amplitude modulations */

y ←− adjustAmplitude(y, w, o)

4.3. ARTIFACTS 31

−1

0

1

−1

0

1

−1

0

1

(a)

(b)

(c)

Figure 4.7. (a) The audio signal of a signal drum hit. The WSOLA input windows for a constant
time-stretch of factor 2 are displayed. (b) The input windows after computing the offsets ∆n for
all windows. (c) The resulting audio signal. When listening to the audio signal one hears that the
transient originating from the drum hit is repeated two times. The regions in the signal that are
related to the repetitions are marked by green boxes.

such positions, a lot of energy is spread all over the frequency spectrum. Especially when
stretching the signal at such a position with a large local time-stretch factor, the density of
input window positions is high, and therefore this short moment of high energy is contained
in several windowed audio segments. When WSOLA copies the windowed audio segments
to the output, the short burst of energy is audible several times because of the temporal
respacing of the windowed audio segments. Figure 4.7 shows an example of an occurrence
of such a stuttering artifact.

Another interesting artifact occurs in case the wavelength of the fundamental frequency
of the input signal x is at some point larger than the used window length. In this case a
single windowed audio segment does not contain enough information to describe the local
content of the signal since it is not possible to determine from this windowed audio segment
the fundamental frequency that is contained in the signal. The task of finding a window
offset that minimizes phase jumps in the fundamental frequency therefore degenerates to
the task of just keeping the signal locally the same to the input signal. But we already
saw that this approach does not yield the intended results and introduces pitch artifacts
into the signal (see Equation 3.1 and Figure 3.2). An example of an instance in which this
artifact occurs can be seen in Figure 4.8.

WSOLA has particular problems when time-scale modifying input signals which are highly

32 CHAPTER 4. WSOLA

0 0.5 1 1.5 2

−1

0

1

0 0.5 1 1.5 2

−1

0

1

x(n)

y(n)

Figure 4.8. The input signal x is a sinusoidal signal with a frequency of 10 Hz, sampled at 22050
Hz. The signal is stretched using WSOLA by a factor of 2. The used window length is 2048
samples which is slightly less than the wavelength of the sinusoid which is 2205 samples. One can
see that output signal y has a fundamental frequency of 5 Hz and is therefore pitch shifted.

polyphonic, like for example recordings of orchestral music. For such input signals the
output often soundsmetallic and noisy. This is due to the algorithm’s core idea of choosing
the input window positions such that phase jumps in the fundamental frequency of the
signal are avoided. In case there is more than one fundamental frequency in the input
signal, only one of them can be preserved properly. The phase continuity of the remaining
fundamental frequencies is destroyed and many phase jumps are introduced into the output
signal what results in the noisy sound.

A forth class of artifacts concerns the timbre of audio signals. The timbre of an instrument
is not only dependent on the overtone spectrum of the sound but also on slight modulation
effects introduced by the instrument. For example the typical sound of a violin has a vibrato
(periodic modulation of the pitch of the signal) whereas the sound of a flute is influenced
by a tremolo (periodic modulation of the amplitude of the signal). These effects, and
especially the frequency of the modulation, are a natural component of the sound of those
instruments. Manipulating the time-scale of a recording containing these instruments
also alters the frequency of the vibrato or tremolo effect. As a result the sound of those
instruments sounds unnatural (see Figure 4.9).

A related artifact can be observed if an instrument is recorded playing in a wide hall like
for example in a church. The sound of the instrument is reflected on the walls of the hall
and therefore perceived several times. This effect is called reverb and it is a natural part
of our sound perception. In fact the human auditory system is able to estimate the size of
a room based on the reverb of sound sources in the room. Stretching an audio recording
with noticable reverb for example by a factor of two also doubles the delay times between
the sound of the original source and its reverb. When listening to the stretched audio
signal it therefore sounds as if the room in which the audio signal was recorded was larger
than it actually is. These kind of artifacts are not only typical for WSOLA but for any
TSM algorithm.

4.3. ARTIFACTS 33

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.9. (a) The waveform of a flute playing a single note. (b) The spectrogram related to (a).
The tremolo effect of the flute sound manifests itself as equidistant small vertical gaps in the energy
distribution. (c) The waveform of a violin playing a single note. (d) The spectrogram related
to (c). The vibrato effect of the violin sound can be observed as slight temporal pitch vibrations
of a constant frequency. (e) The waveform from (a) stretched using WSOLA by a factor of two.
(f) The spectrum related to (e). Note that the fundamental frequency of the signal as well as its
overtone spectrum stayed untouched whereas the gaps in the spectrum that originated from the
tremolo were respaced. This leads to a tremolo that is half as fast as in the original signal. (g)
The waveform from (c) stretched using WSOLA by a factor of two. (h) The spectrogram related
to (g). Again note that the frequency content was not altered during the time-scale modification
but the vibrato is now on half the original tempo.

34 CHAPTER 4. WSOLA

Chapter 5

Phase Vocoder

The most prominent frequency-domain TSM algorithm is the Phase Vocoder [14, 1, 9,
10, 42]. It was initially designed to encode the sound of the human voice (therefore the
abbreviation vocoder for voice encoder) such that in a communication scenario as little
data as possible needs to be transmitted. Nevertheless, it showed that it was also possible
to alter the time-scale of the encoded signal by manipulating the encoding. The most
important tool of the Phase Vocoder is the Short Time Fourier Transform which we discuss
in Section 5.1. Afterwards we describe the high level pipeline of the algorithm in Section
5.2 whereas the core technique of the Phase Vocoder, the so called phase propagation is
discussed in Section 5.3. Finally in Section 5.4 we develop some modifications to the
algorithm, which are based on the Phase Vocoder implementation of [12], that make the
implementation easier and close with a brief analysis of occurring artifacts in Section 5.5.

5.1 Short Time Fourier Transform

The Short Time Fourier Transform, or short STFT, is an algorithm to analyze a signal in
terms of frequency composition while at the same time keeping some temporal information,
and the most important tool of the Phase Vocoder. We already introduced it briefly in
Equation 4.4 but we will restate it here for the sake of convenience. The STFT is defined
as

X(t, k) =
∑

n∈Z

x(t+ n) · w(n) · e−
2·π·i·k·n

N , (5.1)

where t is the analysis instance given in samples, w is the analysis window function, N
is the size of the discrete Fourier Transform and and k is the index of the frequency bin
with center frequency 2·π·k

N . In the context of the Phase Vocoder a frequency bin is also
called a vocoder channel. Further we define that

Xt = X(t, ·) (5.2)

35

36 CHAPTER 5. PHASE VOCODER

Im

Re
∠Q

|Q
|

Q

Figure 5.1. The complex value Q = X(t, k) can be seen as a point given in rectangular coordinates
(Re(Q), Im(Q)). To get the phase and the magnitude of the partial in vocoder channel with index
k at analysis instance t we change the representation to polar coordinates. We compute the phase

by ∠Q = arctan
(

Im(Q)
Re(Q)

)
and the magnitude |Q| =

√
(Re(Q))2 + (Im(Q))2. It always holds that

the phase ∠Q ∈ [−π, π).

is the Fourier spectrum at analysis instance t and

Xν = (Xν(1), Xν(2), ..., Xν(M)) (5.3)

for some vector of analysis instances ν of length M . We write Xν(n) to denote the nth

spectrum in the sequence Xν and Xν(n, k) for its value in the vocoder channel with index
k.

Note thatX(t, k) for some analysis instance t and and vocoder channel index k is a complex
value. The magnitude |X(t, k)| quantifies how much the partial in the vocoder channel
with center frequency 2·π·k

N contributes to the signal x around the analysis instance t. It
is computed as

|X(t, k)| =
√
(Re(X(t, k)))2 + (Im(X(t, k)))2 . (5.4)

Furthermore the complex value X(t, k) also encodes the phase of that partial. This phase
is denoted by ∠X(t, k) and can be computed as

∠X(t, k) = arctan

(
Im(X(t, k))

Re(X(t, k))

)
. (5.5)

See Figure 5.1 for an example. The operators | · | and ∠· may also be applied to matrices
where the application is defined element-wise.

We now come to the inverse of the STFT. Typically the STFT is applied to an audio signal
x using a vector of analysis instances α. This yields the sequence of Fourier spectra Xα.

5.2. PHASE VOCODER PIPELINE 37

But in the context of the Phase Vocoder it is very likely that we do not want to apply the
inverse Short Time Fourier transform (iSTFT) to Xα directly but to some modification
of it. We therefore generalize the iSTFT. Let Z ∈ CM×N be some sequence of Fourier
spectra of length M . Note that Z does not need to be the STFT of any audio signal. To
invert the STFT we apply the inverse Fourier Transform to each Fourier spectrum in Z
and concatenate the resulting audio fragments. We can compute the jth audio fragment
of the output signal y by

yj(n) = Re

(
1

N

N−1∑

k=0

Z(j, k) · e
2·π·i·k·n

N

)
. (5.6)

From these partial signals we can construct the output by a simple overlap and add. To
avoid modulation artifacts, a synthesis window w is applied to the signal fragments before
adding them up. Let β be a vector of synthesis instances given in samples which is of
lengthM . The vector β defines where the audio fragments that are computed by Equation
5.6 are placed in the output signal.

y(n) =
M∑

m=1

w(n− β(m)) · ym(n− β(m) +
⌈wℓ
2

⌉
+ 1) . (5.7)

In case that Z = X(α, k) is the STFT of a signal x for synthesis instances α and it holds
that α = β, the signal x and the signal y are identical up to minor artifacts introduced by
the used synthesis window w.

5.2 Phase Vocoder Pipeline

Given to the Phase Vocoder are an input signal x together with a time-stretch function
τ . The main idea of the Phase Vocoder is to construct a sequence of appropriate Fourier
spectra from x such that applying the iSTFT to this sequence yields the intended time-scale
modification of x. Although it may not appear obvious at first sight, the basic mechanics
of the Phase Vocoder are similar to those of WSOLA: it strives to construct a sequence
of audio fragments from the input signal such that overlap-adding those audio fragments
yields an output signal that is the time-scale modified input signal. The difference is that
the Phase Vocoder preserves phase continuity not by small modifications of the fragment
positions but by manipulating the Fourier spectra of the fragments such that the phases
of consecutive signal fragments match. Nevertheless the basic mechanics of WSOLA and
the Phase Vocoder have a lot in common. Therefore also the internal representations of
the time-stretch function τ are similar in both algorithms. While WSOLA computes an
output window position vector γ and an input position vector σ from τ , the Phase Vocoder
produces a vector of synthesis instances β and a vector of analysis instances α. For the

38 CHAPTER 5. PHASE VOCODER

moment the vectors α and β are computed exactly like σ and γ respectively, namely by

(i) length(β) = ⌈ length(y)ηwo
⌉

(ii) β(1) = 1
(iii) β(n) = β(n− 1) + ηwo for n ∈ [2 : length(β)]

(5.8)

and

α(n) = τ−1(β(n)) (5.9)

for all n ∈ [1 : length(β)]. Note that w describes the analysis window of the STFT in this
case and the overlap factor o is some fixed constant. Nevertheless we will discuss some
changes to the Phase Vocoder which will simplify its implementation but will also affect
the definitions of α and β in Section 5.4.

The first step of the algorithm is to compute the STFT of x at the analysis instances α.
This yields the sequence of frequency spectra Xα. Unfortunately if we now compute the
output signal y by applying the iSTFT to Xα using the synthesis instances β we run into
the same problems as with the basic OLA technique: by not taking care of the phases
of the partials we get phase jump artifacts in the output. Therefore we have to adjust
the phases of all partials in the Fourier spectra Xα before applying the iSTFT. This step
involves a technique called phase propagation which is discussed in detail in Section 5.3.
It yields the phase adjusted sequence of Fourier spectra which we denote by X̃. Finally,
applying the iSTFT to X̃ using the synthesis instances β yields the time-scale modified
output signal y. The several stages of the Phase Vocoder are visualized in Figure 5.2.

The Phase Vocoder realizes time-scale modification of audio signals by maintaining local
similarity of the magnitude spectra of the input and output spectra and at the same
time keeping the phase of all partials of the output signal continuous. It is therefore, like
WSOLA, an approach to fulfill the instantiation of ≈ given in Equation 4.8.

5.3 Phase Propagation

Having a sequence of Fourier spectra Xα we now need to think about how to change
the phases of all the partials in all vocoder channels such that no phase jumps occur
when copying the audio signal fragments, that result from applying the inverse Fourier
Transform to the spectra, to the output signal at synthesis instances β. The core idea is
the following: Given a discrete sinusoidal wave with angular frequency ω and phase ϕ at
some sample point n. We now want to know which phase this sinusoidal wave will have at
point m where m > n. But knowing the frequency ω and the phase ϕ makes this simple.
The value (m− n) ·ω gives us the phase increment of the sinusoidal wave from point n to
point m. Therefore the phase of the sinusoidal wave at m will be ϕ+(m−n) ·ω (we need
to shift this value to the range of [−π, π) such that it is a valid phase). This is exactly
what we want to know in the Phase Vocoder: For our first spectrum we do not need to
adapt any phases and we can therefore set X̃(1) = Xα(1). For X̃(2) we already know

5.3. PHASE PROPAGATION 39

0

1

0

1

α(1) α(2) α(3) α(4) α(5)

Xα

X̃

β(1) β(2) β(3) β(4) β(5)

STFT using analysis instances α

Phase adaption

iSTFT using synthesis instances β

Figure 5.2. Schematic mechanics of the Phase Vocoder. The blue bars symbolize the audio
signals. The spectrograms Xα and X̃ are schematic. The input signal is windowed at the analysis
instances specified by α. All windowed audio segments are then Fourier transformed. After the
phase adjustment all spectra are transformed back to the time-domain using the inverse Fourier
Transform, windowed and copied to the output at synthesis instances β. The example shows how
the Phase Vocoder produces a version of the input signal that is speeded up by a constant factor.

40 CHAPTER 5. PHASE VOCODER

X̃(n) Xα(n+ 1)

k k

partial in X̃(n, k) of frequency ω partial in Xα(n+ 1, k)

β(n) β(n+ 1)

β(n) β(n+ 1)

set ∠X̃(n+ 1, k) = ∠X̃(n, k) + (β(n+ 1)− β(n)) · ω

Figure 5.3. Visualization of the phase propagation. For this example we investigate a single
partial, but the phase propagation works in the same way for all partials in all vocoder channels.
Assume that we already have already computed X̃(n) correctly. The goal is to set the phase of the
green sinusoid to the phase of the blue sinusoid at β(n+1). Since we know that the phase of the blue

sinusoid is initially ∠X̃(n, k) we can compute its phase at β(n+1) as ∠X̃(n, k)+(β(n+1)−β(n))·ω

and therefore can set the phase of X̃(n + 1, k) correctly. The phase is propagated from X̃(n) to

X̃(n+ 1).

5.4. MODIFICATIONS FOR A SIMPLE IMPLEMENTATION 41

the magnitude spectrum |X̃(2)| = |Xα(2)|. To compute ∠X̃(2) we can proceed exactly as
mentioned above for every single vocoder channel k. In this case the points n and m are
β(1) and β(2). This technique is called phase propagation since the phases of a Fourier
spectrum in a sequence of Fourier spectra are propagated to the next spectrum in the
sequence. The process is visualized in Figure 5.3.

The problem is that we do not know the frequencies of all the partials in the vocoder
channels exactly. Let Ωk = 2·π·k

N be the center frequency of the kth vocoder channel. A
partial lying in a phase vocoder channel with center frequency Ωk not necessarily has the
frequency Ωk by itself. It just has a frequency that is closer to Ωk as to any other center
frequency of the remaining vocoder channels. We therefore have to estimate the exact
frequencies of all the partials first. To this end we compute the so called heterodyned phase

increment of vocoder channel k at analysis instance α(n) which is denoted by ∆φ
α(n)
k .

∆φ
α(n)
k = ∠Xα(n, k)− ∠Xα(n− 1, k)− (α(n)− α(n− 1)) · Ωk . (5.10)

The term ∠Xα(n, k)−∠Xα(n−1, k) describes the phase increment from analysis instance
α(n− 1) to α(n) that is actually present in the Fourier spectra. The term (α(n)− α(n−
1)) · Ωk on the other hand describes the expected phase increment in case the partial in
vocoder channel k had exactly frequency Ωk. The heterodyned phase increment therefore
describes the small deviation of the computed phase increment from the phase increment
that a partial with frequency exactly Ωk would have had. Note that we have to shift the

heterodyned phase increment ∆φ
α(n)
k to the range [−π, π) such that it is a valid phase.

For the sake of simplicity we will denote the shifted version by ∆φk.

From ∆φk we now can compute the actual frequency of the partial that lies in vocoder
channel k at analysis instance α(n). This frequency is called the instantaneous frequency
of the partial at position α(n) and is denoted by ω̂k(α(n)). Note that dividing a phase ϕ
by some distance d yields the frequency of the sinusoidal wave that has phase ϕ at d.

ω̂k(α(n)) = Ωk +
∆φk

α(n)− α(n− 1)
. (5.11)

Finally having estimated the exact frequencies we can apply the phase propagation by

∠X̃(n, k) = ∠X̃(n− 1, k) + (β(n)− β(n− 1)) · ω̂k(α(n)) . (5.12)

5.4 Modifications for a simple implementation

In implementations of the Phase Vocoder it is often convenient to keep the rather complex
phase propagation as simple as possible. To this end we can modify the pipeline described
in 5.2 a little bit. Instead of achieving the time-scale modification by spacing the analysis
instances of the STFT differently from the synthesis instances we can also construct a
completely new sequence of Fourier spectra for the output signal from the STFT of the
input signal. The core idea of the new approach, and the reason why the phase propagation

42 CHAPTER 5. PHASE VOCODER

(a)

x
α(1) α(2) α(3) α(4) α(5)

Xα Xα(1) Xα(2) Xα(3) Xα(4) Xα(5)

X̃ X̃(1) X̃(2) X̃(3) X̃(4) X̃(5)

y
β(1) β(2) β(3) β(4) β(5)

(b)

x
α(1) α(2) α(3)

Xα Xα(1) Xα(2) Xα(3)

Ẋ Ẋ(1) Ẋ(2) Ẋ(3) Ẋ(4) Ẋ(5)

y
β(1) β(2) β(3) β(4) β(5)

STFT using α

Respacing and phase adaption

iSTFT using β

STFT using α

Interpolation and phase adaption

iSTFT using β

̺hop

̺hop

Figure 5.4. (a) Schematic overview of the standard Phase Vocoder. Note that the vectors α and
β are of the same length. (b) Schematic overview of the modified Phase Vocoder for a simpler
implementation. In opposite to the standard Phase Vocoder the Fourier Spectra for the output
signal y are not directly computed from the input signal x but interpolated from some spectra that
were computed at equidistant analysis instances α. Note that therefore the length of the vector of
analysis instances α is unequal to the length of the vector of synthesis instances β. Note further
that all analysis instance and synthesis instances are spaced apart by the same distance ̺hop

5.4. MODIFICATIONS FOR A SIMPLE IMPLEMENTATION 43

becomes simple in the end, is to have equidistant analysis and synthesis instances, all
spaced apart by a constant value. This value is called the hop factor and is denoted
by ̺hop. Note that therefore the vectors α and β do not need to be of the same length
any more. In fact whenever the duration of a time-scale modified signal differs from
the duration of the initial signal their length will also differ. Figure 5.4 visualizes the
differences between the two Phase Vocoder approaches.

For a given input signal x and a time-stretch function τ we can define

(i) length(α) = ⌈ length(x)̺hop
⌉

(ii) α(1) = 1
(iii) α(n) = α(n− 1) + ̺hop for n ∈ [2 : length(α)]

(5.13)

(i) length(β) = ⌈ length(y)̺hop
⌉

(ii) β(1) = 1
(iii) β(n) = β(n− 1) + ̺hop for n ∈ [2 : length(β)]

(5.14)

Applying the STFT to the input signal x at analysis instances α yields Xα. Our goal
is now to construct from Xα a sequence of Fourier spectra Ẋ of length length(β) such
that when applying the inverse Fourier Transform to Ẋ using synthesis instances β we
get the desired output signal. We start by first constructing a sequence of Fourier spectra
Ẍ that has the same magnitude spectrum as Ẋ such that it holds that |Ẋ| = |Ẍ|. Let
fxα : [1 : length(x)]→ CN be a function defined as follows.

fxα(t) =
t−α(i)

α(i+1)−α(i) ·Xα(i) +
α(i+1)−t

α(i+1)−α(i) ·Xα(i+ 1) for α(i) ≤ t ≤ α(i+ 1) . (5.15)

The function fxα assigns to every sample position in x a Fourier spectrum that was com-
puted by linear interpolation between the Fourier spectra of x at analysis instances α. We
therefore can compute

Ẍ(n) = fxα(τ
−1(β(n))) . (5.16)

The internal encoding of the time-stretch function τ therefore does not lie in the vectors
of analysis and synthesis instances anymore, but in the sequence of Fourier Spectra itself.

Having computed Ẍ and knowing that |Ẋ| = |Ẍ| we now have to take care of the phases
∠Ẋ. This is again done using the phase propagation technique. Recall that to compute
the phase propagation we have to know the exact frequencies of all the partials lying
in the vocoder channels. To compute these exact frequencies we can use the phases of
two successive Fourier spectra. Unfortunately we can not assume the phases of Ẍ to be
meaningful since Ẍ was computed by linear interpolation. The only source of reliable
phase information is the sequence of Fourier spectra Xα. We therefore assume that all
Fourier spectra in Ẍ that were computed by linear interpolation between Xα(n− 1) and
Xα(n) have those exact frequencies that can be computed using Xα(n−1) and Xα(n). To

44 CHAPTER 5. PHASE VOCODER

be able to compute those exact frequencies we need to be able to access these two spectra
given the index of a synthesis instance in β. Note that the term

gm = α

(⌈
τ−1(β(m))

̺hop

⌉)
(5.17)

yields the index i in α such that α(i) is the biggest entry in α that is smaller than τ−1(β(m))
since the difference between two analysis or synthesis instances is by construction always
constantly ̺hop. Furthermore gm + 1 is the index of the smallest entry in α that is larger
than τ−1(β(m)). Therefore we can define

X1(m) = Xα(gm) (5.18)

and
X2(m) = Xα(gm + 1) . (5.19)

X1(m) and X2(m) are exactly the two spectra that were used to interpolate Ẍ(m).

Finally we can compute the phase propagation as

∠Ẋ(n, k) = ∠Ẋ(n− 1, k) + ̺hop · ω̂k(α(n)) (5.12)

= ∠Ẋ(n− 1, k) + ̺hop · (Ωk +
∆φk
̺hop

) (5.11)

= ∠Ẋ(n− 1, k) + ̺hop · Ωk +∆φk
= ∠Ẋ(n− 1, k) + ̺hop · Ωk

+(∠X2(n, k)− ∠X1(n, k)− ̺hop · Ωk) (5.10)

= ∠Ẋ(n− 1, k) + (∠X1(n, k)− ∠X2(n, k))

In other words, whenever we want to calculate the phase ∠Ẋ(n) for a magnitude spectrum
|Ẋ(n)| that was constructing by linear interpolation between two Fourier spectra X1(n)
and X2(n) we simply have to add the phase differences ∠X2(n) − ∠X1(n) to the known
phases ∠Ẋ(n − 1) (where ∠Ẋ(1) = Xα(1),). Note that in the computations above we
argued about a single vocoder channel. But since the computations are the same for every
vocoder channel we can do the computations on the whole spectra directly.

We get the time-scale modified output signal y by applying the iSTFT to Ẋ using the
analysis instances β. The modified pipeline is visualized in Figure 5.5.

5.5 Artifacts

When listening to audio signals produced by the Phase Vocoder they often sound like if
the content of the original signal was played in some distance. Percussive elements in the
signal sound hollow and also non percussive parts sound phasy. These artifacts occur not
only when applying large time-stretch factors but immediately when time-scale modifying
the signal only slightly. The cause of these artifacts lies in the destruction of the vertical
phase coherence of the signal. By design, the Phase Vocoder ensures horizontal phase

5.5. ARTIFACTS 45

STFT using synthesis instances α

Interpolation of Spectra

Phase adjustment

iSTFT using synthesis instances β

x

Xα

Ẍ

Ẋ

y

Figure 5.5. The pipeline of the modified Phase Vocoder. In this example the Phase Vocoder is
applied with a time-stretch factor of 2. Note that the length of Ẍ is twice the length of Xα.

coherence, meaning that over the duration of the signal the phases in a vocoder channel
are adapted such that there occur no phase jumps in this particular vocoder channel. But
for the overall sound of the signal also the relations of the phases in the several vocoder
channels at a given point in time are important. These relations are referred to as vertical
phase coherence and they are not maintained by the Phase Vocoder. Figures 5.6 and
Figure 5.7 show examples how the loss of vertical phase coherence affects an audio signal.

46 CHAPTER 5. PHASE VOCODER

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

f1

f2

f3

fsum

f1

f2

f3

fsum

(a) (b)

Figure 5.6. (a) The three partials f1, f2 and f3 form the signal fsum. The signal fsum has a
clear peak structure. (b) The frequencies of the partials f1, f2 and f3 are the same as in (a), but
the phases are slightly modified. The signal fsum lost its peak structure because of the destroyed
vertical phase coherence.

0 1 2 3 4

0 1 2 3 4

Figure 5.7. The audio signal of drum beat and its time-scale modified version produced with the
Phase Vocoder. The constant time-stretch factor used in this example is 1.01. One can observe that
the amplitude of the peaks decreased in the time-scale modified version. Note that the amplitude of
the first beats were only slightly decreased. This is due to the fact that we initialized X̃(1) = Xα(1)
and the deviation from the initial vertical phase coherence is therefore smaller at the beginning of
the signal.

Chapter 6

Transient Preserving WSOLA

As noted in Section 4.3 stuttering artifacts at transients are a significant cause for audio
signal quality degradation in WSOLA. A method to prevent this kind of degradation is the
so called transient preservation. The core idea is to suspend the time-scale modification at
transient positions in the audio signal. To compensate for these suspensions the remaining
parts of the signal are stretched with a slightly different time-stretch factor. This can be
done by manipulations of the time-stretch function τ . In this chapter we first introduce
a novel, simple and effective way of representing time-stretch functions in Section 6.1.
Afterwards we will discuss the transient preservation process in detail: We start with
some basic transient detection in Section 6.2. Knowing the positions of the transients
in an audio signal we can proceed with the transient preservation by manipulating the
time-stretch function. The process is explained in detail in Section 6.3. Afterwards we
will investigate the limits of transient preservation in Section 6.4.

6.1 Anchor Points

In practical applications it is necessary to have a simple and practical representation of
the time-stretch function τ as an input for the WSOLA algorithm. We therefore represent
it by a set of so called anchor points. An anchor point is a pair of two points in time
where the first entry specifies a point in time in the input audio signal and the second
entry specifies where this point in time should be mapped to in the output audio signal.
Between two anchor points the audio signal is modified in a linear fashion. Using anchor
points is a simple way of expressing piecewise linear time-stretch functions which are
sufficient for most applications. For example in the context of the Connector where
we want to rearrange the beat positions of an audio signal, we have exactly one anchor
point per beat. The first entry of the anchor point is set to the time of the beat in the
input audio signal and the second entry to the time where the beat should be placed. An
example can be seen in Figure 6.1.

In fact, also constant time-stretch factors are realized using anchor points. In case our
WSOLA implementation receives a global time-stretch factor t as an input along with an
audio signal x, the implementation just introduces two anchor points: one to synchronize

47

48 CHAPTER 6. TRANSIENT PRESERVING WSOLA

0 1 2 3 4 5 6 7 8
−1

0

1

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
9

10
11

0 1 2 3 4 5 6 7 8 9 10 11
−1

0

1

x(n)

y(n)

Anchor points

Figure 6.1. An audio signal x and its time-scale modified version y (time is given in seconds).
The non-linear time-scale modification was specified using a set of anchor points. For each beat
in x (indicated by red bars) there exists an anchor point that specifies the point in time where
this beat should be mapped to in the output. Note that the red bars in y mark exactly the beat
positions again.

the beginnings of input and output (this is the anchor point (1, 1) that maps sample
position 1 in the input to sample position 1 in the output) and one to synchronize the
endings (which is (length(x), t · length(x)) since the output should have t times the length
of the input).

To compute the input position vector σ we interpolate τ from the set of anchor points
by discrete linear interpolation (recall from Chapter 4 that σ is computed by σ(n) =
τ−1(γ(n)). This was defined in Equation 4.2). Note that in principle the anchor points
form exactly a discretized time-stretch function according to Definition 3.4. To compute
σ we then can use the inverted interpolated time-stretch function accoring to Definition
3.6.

6.2 Transient Detection

Not every transient in an audio signal causes a stuttering artifact when time-scale ma-
nipulating the signal with WSOLA. These artifacts are for example rarely audible when
time-scale modifying a recording of a violin. On the other hand they are almost always
present when stretching the recording of a drum. To find the transients that produce the
undesired stuttering artifacts in WSOLA it is therefore necessary to first describe the class
of artifact causing transients.

According to our experience the most perceivable stuttering artifacts occur at points in
the signal where some source produces a short, noise like burst of energy. These bursts
are then audible several times in the time-scale modified signal what causes the stuttering
sound. Sound sources which frequently produce such artifacts are for example drum or

6.2. TRANSIENT DETECTION 49

cymbal hits but also strong onsets of instruments that have a percussive component like a
piano. In general we can say that we are looking for strong note onsets of both percussive
and non-percussive instruments. A note onset is the point in an audio signal where the
perception of the note starts and it is commonly marks the beginning of a transient. See
Figure 6.2 for an example. Unfortunately the task of detecting onsets in an audio signal is
by far not trivial. A lot of work has been done in this field (for example [20, 2, 5, 4, 27, 7]),
but the task of finding all note onsets in an arbitrary audio signal is not solved yet. The
reason for this is that a perfect onset detection algorithm should be able to detect even the
softest onsets like for example those of softly played violins. This is extremely difficult.
Fortunately we do not need a perfect onset detection algorithm. We are only interested
in onsets that are well perceivable as such since stuttering artifacts are not likely to occur
at soft note onsets. The task of finding this kind of note onsets is much simpler. We are
looking for massive bursts of energy in the frequency content of the signal. These can
be found by looking for peaks in the sum of the magnitudes of all frequency bands. We
also feel that the high frequency bands contribute more to noticeable transients than the
low frequency bands and therefore weight the high frequency content more than the low
frequencies. To this end we combine two standard techniques and apply them to the audio
signal. Let x be the input audio signal. We first introduce the high frequency content of
x [4]

HFCx(n) =

N/2∑

k=2

k · |Xα(n)|
2 , (6.1)

where α is a vector of equidistant analysis instances in x of length M , n ∈ [1 : M] and
Xα is the Short Time Fourier Transform of x according to the definitions introduced in
Chapter 5. The high frequency content is a function that describes the instantaneous
energy of the signal at a given point in time while the energy in high frequency bands is
weighted more than the energy in low frequency bands.

A standard technique to find bursts of energy in an audio signal is the so called spectral
difference [2]. It is defined by

SDx(n) =

N/2∑

k=1

(|Xα(n)| − |Xα(n− 1)|)2 . (6.2)

In principle SDx(n) computes a simple derivative of every single frequency band and sums
up the values to get a one dimensional function. A burst in energy in the signal means a
massive increase of the values in many frequency bands. Therefore the derivative is high
in many frequency bands at the same time and SDx(n) yields high values at this point.

Finally we combine the high frequency content with the spectral difference by weight-
ing the frequency bands in the spectral difference similar to the high frequency content.
We applied a logarithmic compression function to the Fourier spectra to account for the

50 CHAPTER 6. TRANSIENT PRESERVING WSOLA

onset

transient

Figure 6.2. Note onset and transient according to [2].

logarithmic perception of loudness of the human ear.

Dx(n) =

N/2∑

k=1

k · (| log(1 + C ·Xα(n))| − | log(1 + C ·Xα(n− 1)|) (6.3)

with

Dx(1) =

N/2∑

k=1

k · | log(1 + C ·Xα(1))| . (6.4)

We set C = 100 in our experiments. In the function Dx we already have peaks at all
the interesting transient positions in the input signal, but we also have a lot of noise and
negative values that we do not need. The noise comes from smaller energy variations that
do not originate from transients. The negative values indicate abrupt drops of the energy.
Since we want to focus on note onsets, sudden drops of energy are not of interest to us.
We therefore introduce a threshold function λ. Let GsDx be a version of Dx smoothed with
a Hann-window of a length that is equivalent to s seconds in x. Furthermore, let v be the
value of the global maximum of Dx. We define λ by

λ(n) = κlocal ·G
s
Dx(n) + κglobal · v , (6.5)

where κlocal, κglobal ∈ R are variables to control the influence of the two parts. The
threshold function λ is therefore a combination of a local averageGsDx and a global absolute
threshold κ · v. We then compute

Tx(n) = max(0, Dx(n)− λ(n)) . (6.6)

We call the function Tx a novelty curve of the signal x. Figure 6.3 shows the audio signal
of a musical scale played on a piano together with its novelty curve.

It is important to notice that our transient detection method is not meant to be a state of
the art onset detector. Modern onset detectors tend to be very sensitive to the input audio
signal and often yield false positives. Furthermore, they are often capable of detecting

6.2. TRANSIENT DETECTION 51

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

(a)

(b)

(c)

(d)

(e)

Figure 6.3. (a) The waveform of an audio signal x of a musical scale played on a piano. (b) The
Short Time Fourier Transform Xα for a vector of equidistant analysis instances α. (c) The Short
Time Fourier Transform from (b) with weighted frequency bands and logarithmic scaling applied.
(d) The function Dx. The red line indicates the threshold that will be applied. (e) The novelty
curve Tx.

52 CHAPTER 6. TRANSIENT PRESERVING WSOLA

our approach Grosche et al.

Filename Precision Recall Precision Recall
cello1 0.333 0.164 0.730 0.885
clarinet1 0.200 0.114 0.061 0.086
classic2 0.429 0.079 0.388 0.868
classic3 0.000 0.000 0.023 0.500
distguit1 0.857 0.316 0.875 0.737
guitar2 0.880 0.611 0.842 0.889
guitar3 0.976 0.732 0.966 1.000
jazz2 0.692 0.383 0.821 0.681
jazz3 0.838 0.585 0.975 0.736
piano1 1.000 0.632 0.950 1.000
pop1 0.941 0.593 0.719 0.852
rock1 0.875 0.237 0.935 0.729
sax1 0.714 0.556 0.136 0.333
synthbass1 0.846 0.478 0.905 0.826
techno2 0.972 0.625 0.940 0.839
trumpet1 0.538 0.125 0.959 0.839
violin2 0.750 0.288 0.771 0.877
Average 0.697 0.383 0.706 0.746

Table 6.1. Precision/Recall Results. An onset was counted as detected correctly if it lied in a
tolerance region of 50 ms around the reference onset. Database and reference annotations taken
from [29].

softer onsets which are not of interest to us since such onsets do not cause stuttering
artifacts in WSOLA. Detecting too many erroneous transients (either positions where no
onset takes place or the present onset is not artifact causing) can even degenerate the
output audio quality. The transient preservation is realized by a manipulation of the
time-stretch function (see Section 6.3). A huge amount of erroneously detected transients
therefore leads to a degeneration of the time-stretch function or even to a suppression of
the correctly detected transients.

We tested our transient detection method on an onset-annotated dataset of 17 short mu-
sical excerpts [29] together with a state of the art onset detection algorithm developed by
Grosche et al. [20]. A detected onset was classified as correctly detected, or true positive
(TP), in case it was located in a 50 ms tolerance region around a reference onset. Other-
wise it was classified as false positive (FP). In case no onset was detected for a reference
onset this was considered a false negative (FN). We then computed precision and recall
as follows.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
. (6.7)

The results can be seen in Table 6.1. It shows that the precision of our method is only
slightly worse than the precision of the state of the art method. The recall on the other
hand is of course lower. Nevertheless, listening tests revealed that most of the missed
transients were not artifact causing. Figure 6.4 shows the detected onsets of both methods
for an example excerpt.

6.3. TRANSIENT PRESERVATION 53

0 2 4 6 8 10 12 14

Reference

0 2 4 6 8 10 12 14

Our approach

0 2 4 6 8 10 12 14

Grosche et al.

Figure 6.4. Onset detection results for the musical excerpt pop1 from our dataset. The time is
given in seconds. Vertical lines indicate the onset positions. In the reference we indicated onsets
that cause stuttering artifacts by red bars and onsets that are unproblematic when time-scale
modifying with WSOLA by blue bars. The classification was done by listening tests. The excerpt
was time-scale modified using WSOLA with a global time-stretch factor of 2. Afterwards the
artifact causing transient were identified manually. One can see that our approach is capable of
detecting a large amount of artifact causing transients and at the same time yield only few false
positives.

6.3 Transient Preservation

Knowing the positions of the transients in the input audio signal x we now can preserve
these transients when time-scale modifying x. Recall that given to our WSOLA algorithm
is the input signal x together with a set of anchor points that describe the intended time-
stretch function τ . The core idea of the transient preservation is to modify the set of anchor
points, and therefore the time-stretch function τ , such that at transient positions we have
a local time-stretch factor of 1, i.e. no time-scale modification. Let p ∈ [1 : length(x)] be
the position of a transient in the input signal. To preserve this transient we insert two new
anchor points (n1,m1) and (n2,m2) into the set of anchor points. For these new anchor
points it holds that

(i) n1 = p− ǫ1
(ii) m1 = τ(p)− ǫ1
(iii) n2 = p+ ǫ2
(iv) m2 = τ(p) + ǫ2
(v) n2−n1

m2−m1
= 1

(6.8)

with ǫ1, ǫ2 ∈ N (see Figure 6.5). We call the interval [n1 : n2] the transient window and
denote it by Ξ. Intuitively Ξ marks an area around the transient in the input signal. By
using this technique we can manipulate the time-stretch factor locally but at the same time

54 CHAPTER 6. TRANSIENT PRESERVING WSOLA

(p, τ(p)) (p, τ(p))

(n1,m1)

(n2,m2)

detected transient p detected transient p

ǫ1 ǫ2

ǫ1

ǫ2

(a) (b)

Figure 6.5. (a) A segment of a time-stretch function τ . The anchor points are indicated by red
circles. The position p marks the point in the input audio where a transient was detected. (b) To
preserve the transient at position p two new anchor points (n1,m1) and (n2,m2) are introduced
to create a short segment with local time-stretch factor 1 where n1 = p − ǫ1, m1 = τ(p) − ǫ1,
n2 = p+ ǫ2 and m2 = τ(p) + ǫ2.

keeping the global time-stretch function intact. Unfortunately, since WSOLA works with
windows of fixed length, it can not guarantee that time-relations specified by the set of
anchor points are realized exactly. Just because there are two anchor points that indicate
a very small time-scale modification free segment does not mean that there will actually
be a time-scale modification free segment in the output signal of WSOLA. To ensure the
existence of such a segment around the transient we have to take care that the two new
anchor points are not spaced too close to each other. For the sake of simplicity let us first
consider the basic OLA scenario neglecting the existence of the window position tolerance
∆max. In this scenario we have to ensure that there are at least ⌈ 1

1−o⌉ input window
positions placed in the interval Ξ where o is the overlap factor of the OLA algorithm. This
is because in a signal that was constructed by adding up a sequence of windowed audio
segments overlapping by a constant factor o, there are always at most ⌈ 1

1−o⌉ windowed
audio segments that contribute to a given point in the signal. Furthermore, we know that
the windows that will be placed in the interval Ξ will all be equidistantly spaced apart
by the standard window offset ηwo . This is because the local slope of the time-stretch
function τ is exactly 1 in the interval Ξ by design of the two new inserted anchor points.
A slope of 1 indicates that the windows in the input are spaced exactly as the windows
in the output, and the windows in the output are all equidistantly spaced apart by ηwo
by design of OLA. Summarizing we have to ensure that there are at least ⌈ 1

1−o⌉ input
window positions spaced apart by ηwo lying in the interval Ξ to guarantee the existence
of an interval I ⊆ Ξ in the input signal such that this interval is not time-scale modified
when applying OLA. See Figure 6.6 for an example. Note that since the exact positions of
the input windows are not only determined by the time-stretch function τ but also by the
fixed output position vector γ, the exact position of I in Ξ can not be precisely specified
upfront. From these requirements we now can compute the minimal distance between n1
and n2 and therefore the size of the transient window Ξ.

length(Ξ) = n2 − n1 ≥

⌈
1

1− o

⌉
· ηwo ≥

1

1− o
· ηwo =

1

1− o
· (1− o) · wℓ = wℓ . (6.9)

6.3. TRANSIENT PRESERVATION 55

0

1

detected transient

n1 n2

Figure 6.6. In this example we set o = 1
2 . We therefore need at least 1

1− 1

2

= 2 input window

positions spaced apart by ηwo = (1− 1
2) ·wl =

1
2 ·wl in the interval Ξ = [n1 : n2] around the detected

transient such that there exists an interval I ⊆ Ξ (blue area) that is not time-scale modified in the
output.

0

1

detected transient

n1 n2

Figure 6.7. An example where an interval I ⊆ Ξ exists but the detected transient does not lie in
I (blue area) and is therefore not preserved.

Equation 6.9 yields a lower bound on the size of the interval Ξ to ensure the existence of
I. Furthermore, the length of the time-scale modification free interval I can be assessed
by

length(I) ≥

(⌊
n2 − n1
ηwo

⌋
− 1

)
· ηwo (6.10)

since it holds that N windows that are all equidistantly spaced apart byM yield a segment
of length (N − 1) ·M to which only these N windows contribute to. Further, the term
⌊ LM ⌋ describes the minimal number of points that lie in a segment of length L in case the
points are equidistantly spaced apart by M .

At this point we know how large we have to choose Ξ to guarantee the existence of I.
Furthermore, we can even estimate the size of I. But we have another problem. Even
though we can guarantee the existence of the interval I, we do not know its exact position
in the interval Ξ. It is therefore possible that p /∈ I for p being the position of the detected
transient. See Figure 6.7 for an example. To ensure that a detected transient is always

56 CHAPTER 6. TRANSIENT PRESERVING WSOLA

preserved we have to take care that the time-scale modification free interval I is large
enough and will definitely include p. Therefore we will now construct constraints such
that fulfilling these constraints guarantees the preservation of the transient.

Recall at this point that we only discussed a transient preservation for the basic OLA
technique so far. In WSOLA all window positions may shift by the window position
tolerance ∆max. Therefore the whole time-scale modification free segment I may shift by
the same amount. In WSOLA, the subset relationship I ⊆ Ξ = [n1 : n2] therefore has to
be replaced by I ⊂ [n1 −∆max : n2 +∆max]. Note that all other assessments stay valid.
To ensure that a detected transient at position p lies in the interval I it therefore has to
hold that

p ∈ Q = [n2 +∆max − length(I) : n1 −∆max + length(I)] . (6.11)

The interval Q includes all points q such that q ∈ I is independent of the position of I in
[n1 −∆max : n2 +∆max]. We therefore can conclude

p ∈ Q = [n2 +∆max − length(I) : n1 −∆max + length(I)]
⇔ p ∈ [p+ ǫ2 +∆max − length(I) : p− ǫ1 −∆max+ length(I)]
⇔ p ≥ p+ ǫ2 +∆max − length(I) and p ≤ p− ǫ1 −∆max + length(I)
⇔ ǫ2 ≤ length(I)−∆max and ǫ1 ≤ length(I)−∆max

(6.12)

We therefore get the following set of constraints to guarantee the preservation of the
transient

(i) length(Ξ) = length([n1 : n2]) = ǫ1 + ǫ2 ≥ wℓ (6.8), (6.9)
(ii) ǫ1 ≤ length(I)−∆max (6.12)
(iii) ǫ2 ≤ length(I)−∆max (6.12)

(6.13)

But since we do not know the exact size of I we use the lower bound on I from Equation
6.10 to strengthen the constraints.

(i) length(Ξ) = length([n1 : n2]) = ǫ1 + ǫ2 ≥ wℓ (6.8), (6.9)

(ii) ǫ1 ≤ (⌊ length(Ξ)ηwo
⌋ − 1) · ηwo −∆max (6.10)

(iii) ǫ2 ≤ (⌊ length(Ξ)ηwo
⌋ − 1) · ηwo −∆max (6.10)

(6.14)

6.4 Limitations of the Transient Preservation

To ensure that the segment that is defined by the two new anchor points (n1,m1) and
(n2,m2) is indeed time-scale modification free it makes sense to delete any other anchor
points (n,m) with n1 < n < n2 or m1 < m < m2. This can lead to problems in case
two transients are close together and an anchor point, that were inserted to preserve the
other transient, is deleted. We therefore proceed in an iterative fashion and choose the
next transient that should be preserved by picking the highest peak in the novelty curve

6.4. LIMITATIONS OF THE TRANSIENT PRESERVATION 57

Tx. After having modified the set of anchor points to preserve the just found transient,
the indicating peak is removed from the novelty curve and the next highest peak is picked.
This process makes sense since the hight of a peak correlates directly to the energy, and
therefore to the loudness of the causing transient and of course stuttering artifacts at a
loud transient are more noticeable than the artifacts at a rather unobtrusive transient. To
save anchor points that were inserted to preserve a transient from being deleted during
the process we separate the set of anchor points in two parts. Let A be the set of anchor
points. We define

A = Adeletable ∪Anondeletable , (6.15)

where the sets Adeletable and Anondeletable are disjoint. At the beginning of the transient
preservation process we define Adeletable to be the set of all anchor points that describe
τ and Anondeletable = ∅. Whenever we now want to insert new anchor points (n1,m1)
and (n2,m2) into the set of anchor points and there exists an anchor point (n′,m′) ∈
Anondeletable with n1 < n′ < n2 or m1 < m′ < m2 the current transient is skipped
and we proceed with the next transient. Otherwise the new anchor points are added to
Anondeletable and we have Anondeletable = Anondeletable ∪ {(n1,m1), (n2,m2)}. In case there
exists an anchor point (n′′,m′′) ∈ Adeletable with n1 < n′′ < n2 or m1 < m′′ < m2 this
anchor point is deleted and we have Adeletable = Adeletable\(n

′′,m′′). This prevents the
degeneration of the time-stretch function τ and ensures that the strongest transients are
preferred during the process. Figure 6.8 shows an example. The procedure is summerized
in Algorithm 4.

Using this technique ensures that the stronger transients are preferred over weaker tran-
sients. But at the same time it implies limitations on the number of transients that can
be preserved in an audio signal of a certain length. More precisely, for a given local time-
stretch factor ψ and a fixed length of transient windows Ξℓ there exists a minimal distance
δmin between two transient positions such that both transients can be preserved. This
distance can be computed as follows

δmin =

{
Ξℓ + 1 if ψ ≥ 1
1
ψ · Ξℓ + 1 if ψ < 1

(6.16)

The reason for this is the following: Assume we have two transients at positions p′ and p′′

in our input signal and assume further that w.l.o.g. p′ < p′′. To preserve those transients
we want to insert new anchor points (n′1,m

′
1), (n

′
2,m

′
2) for p′ and (n′′1,m

′′
1), (n

′′
2,m

′′
2) for

p′′ into the set of anchor points such that it holds that

(i) n′1 = p′ − ǫ1
(ii) m′

1 = τ(p′)− ǫ1
(iii) n′2 = p′ + ǫ2
(iv) m′

2 = τ(p′) + ǫ2

(v)
n′

2−n
′

1
m′

2−m
′

1
= 1

(6.17)

58 CHAPTER 6. TRANSIENT PRESERVING WSOLA

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0

1

2

3

4

0 1 2 3 4 5 6 7 8
0

1

2

3

4

(a)

(b)

(c)

(d)

Figure 6.8. (a). The input signal x. (b) The novelty curve Tx. (c) The time-stretch function
τ represented by a set of anchor points (red circles). (d) The modified time-stretch function. For
each peak in Tx two new anchor points were introduced. For the sixth peak the anchor point lying
in between the two new anchor points had to be deleted to ensure a local time-stretch factor of 1.
Note that the novelty curve Tx was plotted in the background for demonstration purposes.

6.4. LIMITATIONS OF THE TRANSIENT PRESERVATION 59

Algorithm 4: Transient Preservation

Data: DT signal x, set of anchor points A that describes τ , ǫ1, ǫ2.
Result: Modified set of anchor points A such that transients in x are preserved

when time-scale modifying it.
begin

/* Compute the novelty curve Tx */

Tx ←− ComputeNoveltyCurve(x);

/* Split the set of anchor points */

Adeletable ←− A;
Anondeletable ←− ∅

while Tx 6= 0 do
/* Pick the highest peak in Tx */

p←− indexOfMaxV alue(Tx);

/* Compute new anchor points */

(n1,m1)←− (p− ǫ1, τ(p)− ǫ1);
(n2,m2)←− (p+ ǫ2, τ(p) + ǫ2);

/* Proceed only if no non deletable anchor point lies between

the two new anchor points */

if ¬∃(n′,m′) ∈ Anondeletable : n1 < n′ < n2 ∨m1 < m′ < m2 then
/* If a deletable anchor point lies between new anchor

points delete it */

if ∃(n′′,m′′) ∈ Adeletable : n1 < n′′ < n2 ∨m1 < m′′ < m2 then
Adeletable ←− Adeletable\(n

′′,m′′);

/* Insert the two new anchor points into the set of non

deletable anchor points */

Anondeletable ←− Anondeletable ∪ {(n1,m1), (n2,m2)};

/* Remove the just processed peak from the novelty curve */

Tx(p)←− 0;

/* Merge the sets of deletable and non deletable anchor points */

A←− Adeletable ∪Anondeletable;

60 CHAPTER 6. TRANSIENT PRESERVING WSOLA

p′ p′′

δmin = Ξℓ + 1

(n′

1,m
′

1)

(n′

2,m
′

2)

(n′′

1 ,m
′′

1)

(n′′

2 ,m
′′

2)

Figure 6.9. The minimal distance δmin between transient positions p′ and p′′ such that both
transients can be preserved in case the local time-stretch factor ψ is greater one. The original time-
stretch function τ is indicated by the straight blue line while the time-stretch function resulting
from the insertion of the new anchor points is indicated by the dashed blue line.

and accordingly for n′′1, m
′′
1, n

′′
2, m

′′
2 and p′′. To circumvent that one of the two transients

is skipped during the transient preservation process it has to hold that

(i) n′2 < n′′1 ⇔ p′ + ǫ2 < p′′ − ǫ1 ⇔ Ξℓ < p′′ − p′

(ii) m′
2 < m′′

1 ⇔ τ(p′) + ǫ2 < τ(p′′)− ǫ1 ⇔ Ξℓ < τ(p′′)− τ(p′)
(6.18)

Note that the difference τ(p′′) − τ(p′) can be computed by ψ · (p′′ − p′) since we assume
a constant time-stretch factor and the time stretch function τ is therefore linear. In case
the local time-stretch factor ψ is greater or equal to one we therefore automatically fulfill
the second requirement in Equation 6.18 when fulfilling the first, and the first requirement
is fulfilled when p′′ − p′ ≥ Ξℓ + 1. In contrary, in case the local time-stretch factor ψ
is smaller than one, we fulfill the first requirement automatically whenever fulfilling the
second which is fulfilled when p′′ − p′ ≥ 1

ψ · Ξℓ + 1. Examples can be seen in Figure 6.9
and Figure 6.10.

6.4. LIMITATIONS OF THE TRANSIENT PRESERVATION 61

p′ p′′

δmin = 1
ψ

· Ξℓ + 1

(n′

1,m
′

1)

(n′

2,m
′

2) (n′′

1 ,m
′′

1)

(n′′

2 ,m
′′

2)

Figure 6.10. The minimal distance δmin between transient positions p′ and p′′ such that both
transients can be preserved in case the local time-stretch factor ψ is smaller one. The original time-
stretch function τ is indicated by the straight blue line while the time-stretch function resulting
from the insertion of the new anchor points is indicated by the dashed blue line.

62 CHAPTER 6. TRANSIENT PRESERVING WSOLA

Chapter 7

Listening Test

To gain further insights into the quality of WSOLA and the transient preservation in
WSOLA we performed a listening test. While performing this test we had the following
leading questions:

• How does WSOLA perform on an absolute scale? (In comparison to a perfect time-
scale modification algorithm)

• How does WSOLA perform in comparison to other time-scale modification algo-
rithms?

• How great is the effect of transient preservation in WSOLA?

In Section 7.1 we describe the dataset we performed the listening test on. The test setup
is discussed in 7.2 and results are presented in 7.3.

7.1 Test Dataset

Our test dataset consists of 10 short sonified MIDI files, 4 extracted from the RWC
database [17] and 6 created by ourself (see Table 7.1). The files were chosen to cover
music of different styles, instrumentation, tempo and complexity. Furthermore, our self-
created files were designed to have a repetitive structure such that possible artifacts occur
several times and therefore can be better investigated by the listening test participants.
All files were sonified using a state-of-the-art MIDI synthesizer.

7.2 Test Setup

From each sonified MIDI file in our test dataset we produced 4 time-scale modified versions
with a global time-stretch factor of two, using different time-scale modification algorithms:

63

64 CHAPTER 7. LISTENING TEST

Name content additional comment length

in

seconds

BASS1 Electric bass. 7.5

BONGO1 Regular beat played on Bongos. 6.2

DRUM1 Rock beat played on a standard
drum-set.

Open Hi-Hat and room reverb. 7.4

FLUTE1 Flute playing a simple melody. Strong natural tremolo at a long note. 6.9

GENRE1 Rock music. Playing instruments: flute,
distorted electrical guitar, bass, drums

Polyphone music. Taken from RWC
database.

10.6

JAZZ1 Piano (left and right hand) Strong agogics. Taken from RWC
database.

13

OWN1 Electronic music. Bass and melody
synthesizer

The melody synthesizer produces sharp,
noise-like onsets.

14.7

POP3 Pop music. Playing instruments: flute,
piano, bass, steel guitar, quiet drums

Taken from RWC database. 11.1

POP4 Pop-Rock music. Playing instruments:
distorted guitar, synthesizer, bass,
drums.

Drums play fill-in at the end. Taken
from RWC database.

9

VIOLIN1 Two violins. Strong vibrato. 10.5

Table 7.1. Short description of the used musical excerpts.

• A free MATLAB implementation of the Phase Vocoder1 similar to the implementa-
tion explained in Section 5.4.

• The commercial MPEX4 algorithm2.

• Our implementation of WSOLA.

• Our implementation of the transient preserving WSOLA (TP-WSOLA).

The parameters and settings of the algorithms can be found in Table 7.2.

Since the onset detection itself was not part of the evaluation, we decided to eliminate
possible error sources by extracting all onset positions in the audio signals from the MIDI
files and therefore skipping the possibly erroneous transient detection step in TP-WSOLA.
Additional to the four time-scale modified versions we also produced a sonification of each
MIDI file that had half the tempo of the original version. Since time-scale modification
algorithms are supposed to produce modifications of audio signals that sound as if the
recorded musical piece was initially performed on a different tempo, the half-tempo MIDI
sonification can be seen as the best possible result a time-scale modification algorithm
could produce. We decided to present this version along with the time-scale modified
versions to the test participants to give them a reference on how the perfect result should
sound. Nevertheless, the half-tempo MIDI reference was not specifically marked as such.

For all the excerpts from our test set the listening test proceeded as follows: The original
audio recording along with the five time-scaled versions (four algorithm outputs plus the
half-tempo MIDI reference) in randomized order were presented to the test participants

1http://labrosa.ee.columbia.edu/matlab/pvoc/
2http://mpex.prosoniq.com/

http://labrosa.ee.columbia.edu/matlab/pvoc/
http://mpex.prosoniq.com/

7.2. TEST SETUP 65

Phase Vocoder: Analysis window size: 1024 samples (Hann-window)

Hop factor ̺hop: 256 samples

Synthesis window size: 1024 samples (Hann-window)

WSOLA: Window size wℓ: 552 samples (Hann-Window)

Overlap factor o: 0.5

Tolerance ∆max: 276 samples

Transient preserving WSOLA: Window size wℓ: 552 samples (Hann-Window)

Overlap factor o: 0.5

Tolerance ∆max: 276 samples

Length of transient window Ξ: 1104 samples

ǫ1: 552 samples

ǫ2: 552 samples

MPEX4: The algorithm was run in high quality mode (polyphone complex).

Table 7.2. The parameters and settings for the applied algorithms. All audio signals were sampled
at a rate of 22050 Hz.

Figure 7.1. Screenshot of the InterpretationSwitcher.

using the InterpretationSwitcher [34] (see Figure 7.1). They were asked to rate the
quality of each time-scale modified version on a scale from 5 (excellent) to 1 (bad) while
knowing that among the five versions there always is one version that can be considered
perfect and therefore earns the best possible grade. We decided to give this information to
the test participants since even the perfect half tempo MIDI reference might sound very
unnatural just because of the huge temporal distortion. The questionnaire used for the
listening test can be found in Appendix B.

Overall ten people participated in the listening test. We are aware of the fact that this
small number of probands is hardly enough to get significant results. On the other hand,
we believe that it is enough to get a general feeling of the quality of the different time-scale
modification algorithms.

66 CHAPTER 7. LISTENING TEST

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
A
S
S
1

B
O
N
G
O
1

D
R
U
M

1

F
L
U
T
E
1

G
E
N
R
E
1

J
A
Z
Z
1

O
W

N
1

P
O
P
3

P
O
P
4

V
IO

L
IN

1

∅

Ref

MPEX4

TP-WSOLA

WSOLA

PV

∅

Figure 7.2. Overview of the results of the listening Test. The mean opinion score is color-coded
for each excerpt from our dataset and each time-scale modified version of it. Additionally, the
average values for each excerpt over all time-scale modification techniques were computed, yielding
an indicator for the complexity of the excerpt (bottom row), as well as the average values for each
time-scale modification technique over all excerpts, indicating the overall quality of the respective
time-scale modification technique (last column).

7.3 Results

For all audio recordings in our test dataset we computed the mean opinion score of the
results for each of the five time-scale modified versions. The results can be seen in Figure
7.2 and Figure 7.3. Comments that were given by the test participants during the listening
test are listed in Appendix C.

The listening test therefore yielded the following results:

How does WSOLA perform on an absolute scale? The small number of test
participants makes it hard to answer this question appropriately. What we can state is that
for two examples (FLUTE1 and OWN1) TP-WSOLA algorithm scored almost as good as
the half-tempo MIDI sonification and can therefore be considered to produce results close
to perfection. This might sound promising, but having a closer look at these two examples
relativizes the results: The FLUTE1 example seems to be an easy example in general,
considering that all four algorithms scored relatively good here. The flute onsets are
soft and therefore not likely to cause artifacts during the time-scale modification process.
The test participants also noticed the half-tempo tremolo of the flute and described it as
vibrating but not as disturbing. The OWN1 example on the other hand is predestinated
to score good when being time-scale modified with the TP-WSOLA algorithm: Its bass
line is very monotone and simple while the melody synthesizer produces very short tones
that can be restored perfectly by the transient preservation. An other noticeable example
from the test dataset is the DRUM1 example. Here, the WSOLA algorithm as well as
the TP-WSOLA algorithm score particularly bad. This is because the stuttering artifacts

7.3. RESULTS 67

1

2

3

4

5

Ref

MPEX4

TP−WSOLA

WSOLA
PV

BASS1

1

2

3

4

5

Ref

MPEX4

TP−WSOLA

WSOLA
PV

BONGO1

1

2

3

4

5

Ref

MPEX4

TP−WSOLA

WSOLA
PV

DRUM1

1

2

3

4

5

Ref

MPEX4

TP−WSOLA

WSOLA
PV

FLUTE1

1

2

3

4

5

Ref

MPEX4

TP−WSOLA

WSOLA
PV

GENRE1

1

2

3

4

5

Ref

MPEX4

TP−WSOLA

WSOLA
PV

JAZZ1

1

2

3

4

5

Ref

MPEX4

TP−WSOLA

WSOLA
PV

OWN1

1

2

3

4

5

Ref

MPEX4

TP−WSOLA

WSOLA
PV

POP3

1

2

3

4

5

Ref

MPEX4

TP−WSOLA

WSOLA
PV

POP4

1

2

3

4

5

Ref

MPEX4

TP−WSOLA

WSOLA
PV

VIOLIN1

Figure 7.3. Results of the listening test for the half-tempo MIDI reference (Ref), the MPEX4
algorithm, TP-WSOLA, WSOLA and the Phase Vocoder (PV). The standard deviation is indicated
by red bars.

68 CHAPTER 7. LISTENING TEST

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

(a)

(b)

(c)

(d)

Figure 7.4. (a) The waveform of the first 3 seconds from the half-tempo MIDI reference of
DRUM1. (b) The spectrogram related to (a). Note the rather long decay phases of the notes
resulting from room reverb. (c) The waveform of the first 3 seconds from DRUM1 stretched with
a time-scale factor of 2 using TP-WSOLA. (d) The spectrogram related to (c). Note that a lot of
stuttering artifacts are visible in the decay phases of the notes even though the actual onsets are
preserved by the algorithm.

cause an electric and metallic sound of the drums. The stuttering artifacts also occur
when using TP-WSOLA because of the room reverb in this example (See Figure 7.4).
Summarizing we can say that the quality of time-scale modified audio signals produced
with WSOLA strongly depend on the input audio signal.

How does WSOLA perform in comparison to other time-scale modification
algorithms? For most of the examples in our test dataset WSOLA and TP-WSOLA
algorithm perform slightly worse than the commercial MPEX4 algorithm and slightly
better than the Phase Vocoder. But unlike MPEX4, which robustly yields rather good
results for almost any example, the quality of results for WSOLA is much more signal
dependent.
In this context, it is also important to point out that the commercial MPEX4 and our
MATLAB implementation of WSOLA differ significantly concerning the running time:
while our WSOLA implementation takes about one to two seconds to compute the time-
scale modification of an audio signal of roughly five seconds with a constant time-stretch
factor of two, the MPEX4 algorithm in its highest quality mode (in which we run the
algorithm for our listening test) needs about 20 seconds.

How great is the effect of transient preservation in WSOLA? We can observe
that on average TP-WSOLA scores always better or equal to the standard WSOLA. In

7.3. RESULTS 69

0 0.5 1 1.5

0 0.5 1 1.5 2

0 0.5 1 1.5

0 0.5 1 1.5 2

(a)

(b)

(c)

(d)

Figure 7.5. (a) The waveform of the first 2 seconds from BONGO1 stretched with a time-scale
factor of 2 using WSOLA. (b) The spectrogram related to (a). Note that the stuttering artifacts
are visible very well. (c) The waveform of the first 2 seconds from BONGO1 stretched with a
time-scale factor of 2 using TP-WSOLA. (d) The spectrogram related to (c). One can observe
that the transient preservation reduces stuttering artifacts at transients significantly. This can be
seen in the waveform (steep attack phase and steady decay phase with transient preservation) as
well as in the spectrogram (sharper transient regions in the spectrogram).

some cases it even causes huge quality improvements. Examples for this improvements are
BONGO1 and OWN1, where TP-WSOLA scores significantly better than the standard
WSOLA. Again this is mainly due to the structure of those audio signals. The short bongo
hits in BONGO1 as well as the short noise-like bursts of the melody synthesizer in OWN1
can be restored perfectly by the transient preservation during the time-scale modification.
On the other hand, these bursts also cause major stuttering artifacts when time-scale
modifying with the standard WSOLA technique (see Figure 7.5). For other instruments
like for example the bass in BASS1 the stuttering artifacts are not that well perceivable
and the score difference is therefore not that high. For examples like VIOLIN1, where very
little note onsets occur and the onsets are also rather soft there is virtually no difference
between the standard WSOLA and its transient preserving version.

70 CHAPTER 7. LISTENING TEST

Chapter 8

The Connector’s Pipeline

The purpose of the Connector is to produce a transition from a given audio recording to
another audio recording in a database that fulfills given constraints. This transition should
be as pleasant as possible to the ear of the listener. Of course, pleasant is a very vague
term in this context. There are extremely many aspects of the audio signals that could
count towards the quality of a produced transition like harmony, beat progression, genre,
timbre, volume or even just the quality of the audio recordings that are used. Furthermore,
it is hard to argue about what sounds pleasant to everybody since the same transition
might sound differently appealing to different people. The Connector therefore focuses
on those aspects that are, at least intuitively, generally important when it comes to the
euphony of transitions which are the harmonic progression and the beat. In this chapter
we describe the Connector in its current state.

Given to the Connector are an audio recording for which a transition region is specified
along with a set of user defined constraints. The transition region marks the part in the
audio recording where the transition to another audio recording should take place. Like
shown in Figure 1.3, the Connector works in three stages. In the matching stage, the
audio in the transition region is converted into a suitable representation that allows to
find other audio recordings with regions that share a similar harmonic progression in a
database. Picking the best match that fulfills all constraints specified by the user gives
us the audio recording that we will bridge to. The region in this audio recording that is
similar in its harmonic progression to the transition region is referred to as the matched
region. At this point, the warping stage of the Connector starts. The goal of this stage
is to rhythmically synchronize the transition region with the matched region. This is done
by applying TSM algorithms to both regions such that afterwards the beat positions of
both regions are temporally aligned. The idea of synchronizing the beats while bridging
from one audio recording to another originates from the field of DJing. Since the beat is
a very important element in danceable music, it allows the DJ to create extremely long
audio recordings that are danceable from the beginning to the end without breaks (see
for example [3]). This continuity is exactly what we want to maintain during a transition.
In the last stage of the Connector the two audio recordings are blended by overlaying
the transition region and the matched region and applying a simple crossfade. Since both
regions are now similar in their harmonic progression and rhythmically synchronized, the

71

72 CHAPTER 8. THE CONNECTOR’S PIPELINE

transition should sound euphonious.

This chapter is structured as follows. In Section 8.1 we introduce other work in the field
of music generation. In Section 8.2 and Section 8.3 we explain the matching process in
detail while we discuss the structure of our database in Section 8.4. Finally we have a few
remarks on the warping and the blending stage of the Connector in Sections 8.5 and
8.6.

8.1 Related Work

The idea of connecting existing music by creating euphonious transitions to generate new
music is not a recent one. At the end of the 18th century, Musikalische Würfelspiele were
a popular pastime. In this game a piano player had to compose music by concatenating
measures from known pieces that were randomly chosen by the roll of a dice [22, 16].
Nowadays this idea has shifted towards the digital world. In times were large amounts of
musical scores are available in the form of MIDI data, an automated music generation sys-
tem based on these files is proposed in [6]. This approach works in the so called symbolic
domain which means that it does not deal with existing audio signals but with some ab-
stract representation of music. Music generation in the symbolic domain can be considered
easier to be handled than music generation in the audio domain since the abstract repre-
sentation allows for much more flexibility. Unfortunately to be able to listen to music in
the symbolic domain it either needs to be played by human performers or synthesized by a
machine. But since human performances are expensive and synthesized music is typically
inferior in quality to real world audio recordings, music generation in the symbolic domain
is often not an option. But there also exist approaches working in the audio domain. A
modern field in which techniques to concatenate audio recordings in an appealing way are
very important is the field of DJing [3]. While for a DJ the harmonic similarity of two
connected audio recordings usually plays a minor role, a good rhythmical transition is es-
sential. A tool to automate the process of finding good rhythmical transitions between two
audio recordings automatically is proposed in [24]. The work of [30] comes closest to our
approach. It describes a framework that allows to concatenate a set of audio recordings
to a single long audio recording. The audio recordings are ordered such that euphonious
transitions between the clips are possible. The positions of the transitions are chosen to
maximize the local harmonic and rhythmic similarity of the two audio recordings. The
work of [45] aims to synthesize a soundtrack for a given visual data stream from a single
audio recording, the so called example. By linking events in the visual data stream with
specific parts in the example the complete soundtrack can be rendered.

The approach of concatenating audio recordings can even be used to synthesize new sounds
rather than complete audio recordings. To this end audio recordings are analyzed and
segmented in short units. This is done for large collections of audio data. The units can
then be used to synthesize target sounds by rearranging them. This technique is called
Concatenative Sound Synthesis and is described in [38, 39, 40, 41].

8.2. MATCHING 73

8.2 Matching

In the first stage of the Connector an audio recording should be found in a database that
is at some point similar in its harmonic progression to the transition region. We therefore
first need an appropriate representation of audio signals that allows for comparing them
in terms of harmonic content. The chroma features introduced in Chapter 2 have shown
to capture the desired property very well. They abstract away from instrumentation and
timbre information and are designed to solely focus on the tonal content of the audio
signal. Unfortunately they do not abstract away from timing information since they are
computed at a fixed rate. Although this is in general a desirable property, in the context of
theConnector this would make the matching process rather complicated. In the simplest
case we can state similarity in harmonic progression if we have two feature sequences of
the same length and the features can be considered similar pairwise. But assume we want
to compare the feature representation of two interpretations of the same musical piece and
assume further that one of the two interpretations was performed at half the tempo of the
other. We know that the harmonic progression of both interpretations is exactly the same,
but we can not compare the two feature sequences since they are not of the same length.
There exist techniques that allow for finding similarities in feature sequences where the
compared sequences do not need to be of the same length (Dynamic Time Warping [33])
but these techniques are computationally rather expensive in comparison to the naive
approach. Furthermore it has shown that not only the harmonic similarity is important
to get euphonious results when blending from one audio recording to another, but also
the alignment of the beats in both audio recordings. Therefore it is important that the
harmonic similarity still exists after the temporal alignment of the beats in the transition
region and the matched region. The solution to this issue are the beat-synchronous chroma
features that were also introduced in Chapter 2. Since these features use the musical beat-
level as their time axis we can avoid matching techniques like Dynamic Time Warping
and use the naive approach of comparing two feature sequences of the same length by
pairwise comparison of the features. Furthermore this also solves the problem of keeping
the harmonic content of two audio recordings similar after the alignment of their beat
positions since by design of the beat-synchronous chroma features two feature sequences
are similar exactly in case the two underlaying audio recordings share a similar harmonic
progression on the beat level.

Note that to compute the beat-synchronous features it is essential to know all beat posi-
tions of the underlaying audio recording. These could for example be extracted by using
a beat tracker. Unfortunately the problem of beat tracking is not solved completely so far
since the task is rather hard for some kinds of music like for example violin music [21].
Although there already exist a lot of approaches, like for example in [8, 28, 2, 13], there
exists no beat tracker to our knowledge that could reliably predict the beat positions for
audio recordings of all kinds of music. But since we want to work on a large variety of
different musical styles we just avoid this problem for the moment and assume all beat
positions for all audio recordings to be given. We therefore use a fully beat annotated
database in which all beat positions of all audio recordings are annotated manually.

The matching technique that we use in the Connector was introduced in [35]. Given
a query audio signal, which is the transition region in our case, for which we computed

74 CHAPTER 8. THE CONNECTOR’S PIPELINE

C
C#
D
D#
E
F

F#
G

G#
A
A#
B

C
C#
D
D#
E
F

F#
G

G#
A
A#
B

Q

D

Figure 8.1. Visualization of the task of audio matching. Given a sequence of beat-synchronous
chroma vectors Q computed from our query audio signal, we want to find a subsequence of chroma
vectors in the database D such that the chroma vectors can be considered similar pairwise. For this
example the database was chose to be extremely small for visualization purposes. The subsequence
of chroma vectors that is most similar to the query sequence is marked by a green box.

beat-synchronous chrome features, our goal is to find a segment in an audio recording from
a database that has a similar harmonic progression to our query audio signal on the beat
level. It is therefore important that the database holds beat-synchronous chroma features
of all contained audio recordings as well. To this end, we can simply see the database
as a concatenation of the beat-synchronous chroma features of all audio recordings that
are included in the database. Additionally we keep track of the boundaries in a separate
data-structure. It is therefore possible to map a certain chroma vector in the database
to a decisive position in a decisive audio recording. We now need to find a sequence of
chroma vectors in the database that can be considered similar to the sequence computed
from our query audio signal. Figure 8.1 illustrates this task.

The first step towards this goal is to define a distance measure for chroma vectors. Recall
that all chroma vectors we work with are normalized. Therefore the inner product of two
chroma vectors ~x and ~y, which is denoted by 〈~x, ~y〉 coincides with the cosine of the angle
between ~x and ~y and therefore quantizes the distance of ~x and ~y. For this reason we simply
define our distance measure δ as

δ(~x, ~y) = 1− 〈~x, ~y〉 (8.1)

Note that 〈~x, ~y〉 ∈ [0, 1] and therefore also δ(~x, ~y) ∈ [0, 1]. To extend this distance measure
to sequences of features ~X = (~x1, ~x2, ..., ~xL) and ~Y = (~y1, ~y2, ..., ~yL) of the same length L
we define

δL(~X, ~Y) =
1

L

L∑

ℓ=1

δ(~xℓ, ~yℓ) (8.2)

Having the query sequence of chroma vectors ~Q = (~q1, ~q2, ...~qM) and the sequence of
database chroma vectors ~D = (~d1, ~d2, ...~dN) where M < N we can now define the distance

8.2. MATCHING 75

function ∆ : [1 : n]→ [0, 1] by

∆(i) = δM ((~q1, ~q2, ...~qM), (~di, ~di+1, ...~di+M−1)) (8.3)

for i ∈ [1 : N −M + 1] and

∆(i) = 1 (8.4)

for i ∈ [N−M+2 : N]. The value ∆(i) describes the distance between the query sequence
of chroma vectors and the subsequence of database chroma vectors starting with the ith

vector.

Notice that the function ∆ can be computed very easily. This is the case since we can
compute all interesting values of the distance measure δ by a single matrix multiplication.
Recall that we can write

Q = (~q1, ~q2, · · · , ~qM) =

q12,1 q12,M
...

...

q2,1 q2,2
q1,1 q1,2 · · · q1,M

D = (~d1, ~d2, · · · , ~dN) =

d12,1 d12,N
...

...

d2,1 d2,2
d1,1 d1,2 · · · d1,N

(8.5)

where Q ∈ R12×M and D ∈ R12×N . Now we can compute the matrix

C =
1

M
· (1M×N −QT ·D) (8.6)

where 1M×N ∈ RM×N is the matrix for which all entries are 1. The matrix C has the
form

C = 1
M ·

1− 〈~qM , ~d1〉 1− 〈~qM , ~dN 〉
...

...

1− 〈~q2, ~d1〉 1− 〈~q2, ~d2〉

1− 〈~q1, ~d1〉 1− 〈~q1, ~d2〉 · · · 1− 〈~q1, ~dN 〉

= 1
M

δ(~qM , ~d1) δ(~qM , ~dN)
...

...

δ(~q2, ~d1) δ(~q2, ~d2)

δ(~q1, ~d1) δ(~q1, ~d2) · · · δ(~q1, ~dN)

(8.7)

76 CHAPTER 8. THE CONNECTOR’S PIPELINE

q
u
e
r
y

database

~q1

~q2

.

.

.

~qM
~d1 ~d2 · · · ~dM ~dM+1 · · · ~dN

∆(1) ∆(2) ∆(3) · · · ∆(N −M + 1)

· · ·

Figure 8.2. An abstract representation of the matrix C. The diagonal lines represent the entries
that are summed up to get the entries of ∆.

Therefore we have that

M∑
k=1

Ck,i+k−1 = 1
M ·

M∑
k=1

δ(~qk, ~di+k−1) (8.7)

= δM ((~q1, ~q1, ...~qM), (~di, ~di+1, ...~di+M−1)) (8.2)
= ∆(i) (8.3)

(8.8)

This computation is visualized in Figure 8.2. To find the subsequence of chroma vectors in
the database that is maximal similar to the query sequence of chroma vectors we can now
simply pick the index i in ∆ such that ∆(i) is minimal. The index i then marks the first
vector of the best matching subsequence in the database. Figure 8.3 shows an example of
the matching process.

8.3 Query Pool

To increase the possibility of finding a match in the database that is very similar in its
harmonic progression to the transition region it is helpful to give the matching process
some degrees of freedom. These degrees of freedom are musically motivated and can
therefore be expressed as modifications of the beat-synchronous chroma features of the
transition region. We separate the degrees of freedom into three subclasses.

The position tolerance allows to temporally shift the transition region by up to a certain
amount of beats. This relaxes the constraint on where exactly the transition to another
audio recording should take place (see Figure 8.4).

The pitch tolerance accounts for the fact that it is possible to pitch shift every audio
recording in the database by a small amount of semitones without significant audio degra-

8.3. QUERY POOL 77

5 10 15 20 25 30
0

0.5

1

5 10 15 20 25 30

1

2

3

4

5

6

7

8

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

5 10 15 20 25 30
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

1 2 3 4 5 6 7 8
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

(a)

(b)

(c)

(d)

Figure 8.3. (a) The query sequence of chroma vectors Q computed from 8 measures of the song
“let it be” from the Beatles. (b) The database sequence of chroma vectors D computed from
the first 32 measures of “let it be” from the Beatles. Again the database is extremely short in
this example for the purpose of simplicity. (c) The matrix C computed from Q and D. One can
already see the low-distance-diagonal starting at database index 16. (d) The distance function
∆ computed from C. On can observe that at index 16 the value of the function is 0. Therefore
the subsequence in D starting at index 16 is perfectly identical to the query. In fact the query
sequence of chroma vectors was a subsequence of the database sequence of chroma vectors in the
first place.

2 4 6 8 10 12 14 16
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

0.2

0.4

0.6

0.8

Transition region

Temporally shifted transition region

Figure 8.4. Application of the position tolerance. The position of the first vector in the query
sequence of chroma vectors is shifted to the right by one beat.

78 CHAPTER 8. THE CONNECTOR’S PIPELINE

1 2 3 4 5 6 7 8
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

1 2 3 4 5 6 7 8
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

Transition region Pitch shifted transition region

Figure 8.5. Application of the pitch tolerance. By vertically cyclic shifting the chroma vectors
by one, a match for this modified sequence of chroma vectors that is found in the database is
harmonically similar to the transition region if pitched down by one semitone.

1 2 3 4 5 6 7 8
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

1 2 3 4
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

2 4 6 8 10 12 14 16
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

Transition region

Half-time transition region

Double-time transition region

Figure 8.6. Application of the type of meter tolerance. By either expanding the sequence of
chroma vectors by doubling every chroma vector or compressing it by averaging two neighbored
chroma vectors it is possible to find harmonically similar matches in the database that have a
different beat resolution than the original transition region.

dation. To emulate such a pitch shift, chroma vectors of the transition region are simply
cyclic shifted vertically by the desired amount of semitones (see Figure 8.5).

The type of meter tolerance allows for changing the beat resolution during the transition
phase to half-time or double-time. This is helpful since the the beat of an audio recording
may be perceived on different resolutions and is therefore ambiguous. Without the type
of meter tolerance, two recordings that share the exact same harmonic progression can
not be matched in case the beat of the two audio recordings is annotated on different
resolutions. To emulate the different beat resolutions, the sequence of chroma vectors of
the transition region is either expanded by doubling every single chroma vector (double-
time) or compressed by averaging two neighbored chroma vectors (half-time) (see Figure
8.6).

By applying these modifications and combinations of them to the original query sequence
of chroma vectors we extend the single query sequence to a query pool. Instead of matching
only one sequence of chroma vectors with the database, we sequentially match all sequences
in the query pool with the database and pick the one that yielded the match with the

8.4. DATABASE 79

lowest distance value in the end.

8.4 Database

The matching technique described in Section 8.2 needs the database to have the form
of a single long sequence of chroma vectors. Therefore the chromagrams of all audio
recordings in the database are concatenated and we keep track of the boundaries in a
separate data structure. Additionally, we store further informations about every included
audio recording like for example the name of the sound file and the temporal positions of
all beats on which the computation of the beat synchronous chroma features was based.
The latter information is very important since the beat synchronous chroma features do
not hold any temporal information anymore by themselves.

A problem that might occur when representing the database as a concatenation of the
chromagrams of all includes audio recordings is that the subsequence of chroma vectors in
the database that is most similar to the query sequence of chroma vectors might contain
chroma vectors from two different audio recordings. The solution to this problem is to pad
the sequences of chroma vectors of all audio recordings with a sequence of zero-vectors
which is at least of the same length as the query sequence of chroma vectors. The effect
of this zero-pad is visualized in Figure 8.7.

8.5 Warping

Having developed a good TSM algorithm in Chapter 6, we now can use this algorithm to
rhythmically synchronize the transition region and the matched region. This is done by a
temporal alignment of the beat positions of the two audio clips. The goal is therefore to
compute two time-stretch functions τtr for the transition region and τmr for the matched
region such that when overlaying the results of the time-scale modifications of both audio
clips their beat positions are aligned. Figure 8.8 shows an example. Note that both the
transition region as well as the matched region have the same length on the beat level by
design of the matching process. We define this number of beats to be N . Let the sequence
of beat positions in the transitions region given in seconds be

T = t1, t2, ..., tN (8.9)

and the sequence of beat positions in the matched region

M = m1,m2, ...,mN (8.10)

while it holds that q1 = 0 and m1 = 0. We now have to define a sequence of beat positions

S = s1, s2, ..., sN (8.11)

80 CHAPTER 8. THE CONNECTOR’S PIPELINE

5 10 15 20 25 30 35
0

0.5

1

5 10 15 20 25 30 35
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

5 10 15 20 25 30
0

0.5

1

5 10 15 20 25 30
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

1 2 3 4 5 6 7 8
C
C#
D
D#
E
F

F#
G

G#
A
A#
B

audio recording A audio recording B

audio recording A audio recording Bzeropad

(a)

(b)

(c)

(d)

(e)

Figure 8.7. (a) The sequence of query chroma vectors. (b) A sequence of database chroma
vectors consisting of two audio recordings. The chromagrams are not separated by a zero pad.
(c). The distance function ∆ computed from the query chromagram from (a) and the database
chromagram from (b). The subsequence of chroma vectors in the database that is most similar to
the query sequence of chroma vectors (marked by green box in (b)) contains chroma vectors from
two different audio recordings. (d) The database chromagram from (b) with a zeropad between
the two songs. (e) The distance function ∆ computed from the query chromagram from (a) and
the database chromagram from (d). The zeropad prevents the distance function from having small
values at audio recording boundaries.

t1 t2 t3 t4 t5 t6 t7 t8 t9

m1 m2 m3 m4 m5 m6 m7 m8 m9

T

τtr

S

τmr

M

Figure 8.8. An example of the computations of τtr and τmr.

8.6. BLENDING 81

that we can use to define the time-stretch functions τQ and τM by sets of anchor points

τQ = ((t1, s1), (t2, s2), ..., (tN , sN))
τM = ((m1, s1), (m2, s2), ..., (mN , sN))

(8.12)

The sequence S should be chosen such that the tempo of the transition region smoothly
adapts to the tempo of the matched region. We therefore define

s1 = 0

si = si−1 +
N−(i−1)

N · (ti − ti−1) +
i−1
N · (mi −mi−1) for i ∈ [2 : N]

(8.13)

The transition region as well as the matched region are then time-scale modified using the
time-stretch functions τtr and τtm respectively.

8.6 Blending

To finish the transition we now overlay the transient region with the matched region and
apply a simple blending. Blending is the process of making the transition between two
audio recordings less abrupt. The simplest kind of blending is the so called crossfade.
By decreasing the volume of the transition region until it is finally not perceivable any
more while at the same time increase the volume of the matched region from silence to
the normal volume, a smooth transitions between the two clips is created. Although there
also exist more advanced blending techniques the simple crossfade technique suffices our
needs.

The whole pipeline of the Connector is summarized in Figure 8.6.

82 CHAPTER 8. THE CONNECTOR’S PIPELINE

C
C#
D
D#
E
F

F#
G

G#
A

A#
B

C
C#
D
D#
E
F

F#
G

G#
A

A#
B

C
C#
D
D#
E
F

F#
G

G#
A

A#
B

C
C#
D
D#
E
F

F#
G

G#
A

A#
B

C
C#
D
D#
E
F

F#
G

G#
A

A#
B

C
C#
D
D#
E
F

F#
G

G#
A

A#
B

C
C#
D
D#
E
F

F#
G

G#
A

A#
B

MATCHING

WARPING

BLENDING

Transition region

Currently playing audio

Beat annotation Pitch feature

Beat-synchronous chroma feature

Database

Query pool

Best matching audio

Transition region

Matched region

Synthesized result

+

find best match

possibly pitch shift

TSM crossfade

Figure 8.9. Overview of the Connector.

Chapter 9

Future Work

In this thesis, we discussed various time-scale modification algorithms and their application
to music audio signals. In particular, we analyzed WSOLA as an example of a time-domain
algorithm and the Phase Vocoder as an example of a frequency domain algorithm. Fur-
thermore we introduced modifications to the WSOLA algorithm which reduce artifacts in
the algorithm’s output by preserving transients during the time-scale modification process.
Although this already increases the quality of WSOLA significantly, we feel that there is
still a lot of room for improvements. As already briefly discussed in Chapter 4, WSOLA
often has problems when time-scale modifying signals of high complexity like for example
recordings of orchestral music. This kind of audio signals are highly polyphonic due to the
presence of many instruments that play different notes. Therefore numerous fundamental
frequencies exist in such signals. However, WSOLA is only capable of preserving a single
fundamental frequency. As a consequence, the remaining fundamental frequencies are not
preserved properly and phase jump artifacts are introduced which manifest themselves in
a metallic, noise-like sound. An idea to overcome this phenomenon is to split the input
signal into several subbands prior to the time-scale modification. The subbands are then
time-scale modified seperatly and added up afterwards. Every single subband is of course
less complex than the original input signal. Therefore the time-scale modification of a sin-
gle subband should yield significantly less artifacts than the time-scale modification of the
original signal and therefore also the sum of all time-scale modified subband signals should
suffer less from artifacts. This idea is inspired by the Phase Vocoder which ensures phase
continuity for a very fine-grained frequency decomposition of the input signal. But this
fine decomposition is also responsible for the loss of vertical phase coherence in the output
signal which causes the artifacts that are typical for the Phase Vocoder. By choosing the
number of subbands to be rather low, namely to be in the magnitude of the number of
fundamental frequencies in the input signal, the loss of vertical phase coherence should be
prevented.

On the application side we see a lot of potential in theConnector. For example, although
our matching technique already yields matches that are of a similar harmonic content as
the transition region, it could be further improved by techniques from the field of chord
recognition. During the matching process, we select matches based on the assumption that
the similarity of two sequences of chroma vectors yields a strong indication for harmonic

83

84 CHAPTER 9. FUTURE WORK

similarity. But in fact the numerical similarity of the sequences of chroma vectors is no
guarantee for a perceptual similarity. For example the major and minor chords for a
certain root note only differ in a single chroma value and may therefore be matched. But
changing the harmony from major to minor during a transition often sounds unpleasant.
Furthermore it is likely that the euphony of a transition is not only dependent on the
harmonic structure of the transition region, but also on the chord progression on a larger
scale.

A further improvement of the Connector can be done in its blending stage. The simple
crossfade that we apply during the transition can be replaced by some more advanced
blending technique. Experiments have shown that it is for example sometimes convenient
to blend different instruments in an audio signal in a different way or at different points
in time. To this end, source separation techniques can be applied to the audio signals to
get the functionality of an instrument equalizer.

In conclusion, we have seen that time-scale modification is a central topic in audio signal
processing with various applications such as automated soundtrack generation. In partic-
ular, in the context of the Connector, it has shown that time-scale modification needs
to be combined with further music analysis and retrieval tasks, including beat tracking,
chord recognition, source separation and audio matching. For the future, we plan to fur-
ther automate the various components of the Connector and to develop tools that allow
users to easily search for, modify, merge, and generate suitable soundtracks.

Appendix A

Source Code

In this chapter, the header of our MATLAB implementation of TP-WSOLA that was
described in Chapter 6 and that was created during the writing of this thesis is given.

Sample usage:
parameter.automatedTransientPreservation = 1;

y = tp_wsola(x, 2, parameter);

%%%

% Name: tp_wsola

% Version: 1.0

% Date: 5.10.2011

% Programmer: J. Driedger (driedger@mpi-inf.mpg.de)

%

% Description:

% tp_wsola is a transient preserving time-scale modification algorithm

% based on the WSOLA algorithm. It is capable of preserving transients

% automatically as well as preserving transients at additionally given

% positions.

%

% Input:

% y = wsola(x,t):

% x: mono / stereo signal (column vector)

% t: either a (n x 2) matrix containing anchor points specified in

% samples or seconds or a constant time-stretch factor.

%

% Optional input arguments:

% y = wsola_core(x,t,parameter):

% parameter.windowSize: specifies the size of the Hann-window that is

% used for input and output.

% parameter.tolerance : specifies the tolerance Delta_max for the input

% window positions.

% parameter.APStyle : Is either ’samples’ or ’seconds’ and specifies

% how the given anchor points are interpreted.

% parameter.samplerate: specifies the samplingrate of the audio.

% parameter.automatedTransientPreservation:

% Should be set to 1 in case transients should be

85

86 APPENDIX A. SOURCE CODE

% detected and preserved automatically.

% parameter.preservedPositions:

% Additional positions of transients that should be

% preserved.

% parameter.transientWindowSize:

% The size of the transient window Xi.

%

% Output:

% y: time-scale midified output signal (mono / stereo)

%%%

Appendix B

Listening Test Questionnaire

The questionnaire that was used for the listening test to rate the quality of different
time-scale modification algorithms (Section 7).

87

88 APPENDIX B. LISTENING TEST QUESTIONNAIRE

Instructions

The aim of this evaluation is to rate the quality of different audio time-scale modification
techniques. Time-scale modification algorithms allow us to change the speed on which
an audio recording is played without altering the pitch of the audio. They are intended
to produce versions of an audio recording that sound as if the musical piece was initially
performed on a different tempo. In the following we will present you with a couple of dif-
ferent audio recordings along with several time-scale modified versions of them which were
produced using different time-scale modification algorithms. The original audio record-
ings were created synthetically and may therefore sound a little unnatural. All modified
versions are double the length of the original audio recordings. We ask you to rate the
quality of the manipulated versions on a scale from 5 (excellent) to 1 (bad). To give you
a reference for your evaluation there will always be a version that is simply the original
recording synthesized on half the tempo. This version can therefore be seen as the result
of a perfect time-scale modification algorithm.
You will be able to listen to the original audio recording and the modified versions as
often as you like but it is important that you listen to each audio recording and each
modification at least once from the beginning to the end. Feel also free to comment on
everything that occurs to you during the listening test.

EXAMPLE

excel-
lent

good fair poor bad Comment

5 4 3 2 1

Version 1 ©
⊗

© © © something was wrong with
the pitch

Version 2 ©
⊗

© © ©

Version 3
⊗

© © © © sounded perfect!

Version 4 © © © ©
⊗

had nothing to do with the
original...

Version 5 © © ©
⊗

© beginning was good, but
screwd up at the end

Additional Comments: The quality was in general hard to tell since this example is pretty stupid.

Appendix C

Listening Test Comments

In the following the comments that were given by the listening test participants during
the listening test are listed.

Name Algorithm Comments

BASS1 MPEX4 slightly wrong notes — slightly stuttering at the beginning but 2nd
half was good — strange chorus like effect — quick tone changes do
not sound well — quite an echo these artifacts

trans. prev. WSOLA artifacts at the beginning/end — slightly wrong notes — slightly
stuttering at the beginning but 2nd half was good — at the
beginning of each tone quite some artifacts

WSOLA artifacts in higher pitches — unclean note transitions at the end —
slightly stuttering — a little bit vibrating — artifacts — at the
beginning of each tone there were artifacts

Phase Vocoder lower volume? — no clean tones — stuttering — dynamics killed?
— higher frequencies cut off — because the sound is vibrating —
attacks do not sound well — somehow crumbly

BONGO1 MPEX4 delay effect, small artifacts on higher drums — echo/doubled notes
— slight stuttering — strange onset. sounds like after using a
compressor — attacks are duplicated — the sound is interesting but
not right

trans. prev. WSOLA higher pitches bad, lower good — slight echo — the beats sound
stretched — stretches too long (bongos sound artificial) — the
sound lost some corpus — it sounds empty

WSOLA electric sound — stuttering — metallic sound — seems to have noise
— attacks are duplicated — doesnt sound like a bongo anymore

Phase Vocoder echo — doubled notes — one additional hit every time like short
delay — pingpong echo — echo of sound happens — attacks are
duplicated — too much echo

DRUM1 MPEX4 still lots of artifacts but sounds more homogeneous than others —
stuttering — metallic + wobble — wobbly artifacts — electro
drums, but bad bass drum

trans. prev. WSOLA sounds like a synthesizer at higher drums — vibrating notes —
stuttering disturbing sound — sounds like beat-mashed — the
drum noises sound as if they are duplicated — the drum became a
distorted mess

WSOLA but sounds funny — metallic — stuttering, disturbing sound —
metallic — sound quality too low, too much noise — the drum
noises sound as if they are duplicated — electro!!!

Phase Vocoder sounds like a wet room — sligtly metallic — echoing — echo/delay
— a little bit echo but okay — the drum noises sound as if they are
duplicated — echo

89

90 APPENDIX C. LISTENING TEST COMMENTS

FLUTE1 MPEX4 onsets sounds a little like a glockenspiel — difference to original
hardly noticableonly at the end — vibrating at the ending note —
almost perfect but a bit too long

trans. prev. WSOLA little artifact at the end — difference to original hardly noticable —
vibrating at the ending note

WSOLA little artifact at the end + glockenspiel onsets — difference to
original hardly noticable only in the beginning — vibrating at the
ending note —could be the original but the long tone at the end
sounds strange

Phase Vocoder artifacts at onsets — doubled onset at each note — chorus —
vibrating at the ending note — something is strange

GENRE1 MPEX4 drums bad, rest good — metallic drums — stuttering but better
than others — wobbling — quite good but the instruments do not
seem synchronized

trans. prev. WSOLA good drums at the end replaced by electric guitar — stuttering —
duplicated attacks — almost perfect but the guitar at the end is
strange

WSOLA lot of artifacts in snare — metallic drums — stuttering — metallic
— duplicated attacks — echo and distortion

Phase Vocoder sounds like wet room — metallic and dull — low volume echo —
not much survives here — bass guitar almost gone at the end —
unbearable, too many artifacts — completely broken

JAZZ1 MPEX4 still some artifacts — sounds “blurry” — ringing sound pitch? —
although it seems strange — some reverb

trans. prev. WSOLA Notes somehow wrong, anoying peeptone — distorted — pitch
unstable — weird noise after some of the played notes — noise in
the pitch — ”plastic” sound — too distorted

WSOLA lots of artifacts from onsets — notes somehow wrong —distorted —
weird noise after some of the played notes — too much noise in the
pitch — duplicated attacks + “plastic” — almost broken, cannot
stand the chords

Phase Vocoder wet room honkey tonk effect — echo, metallic — like a distant fog
piano but almost “good” — postnuclear piano — nearly cannot tell
the instrument — sounds like “far away” — sounds like plastic

OWN1 MPEX4 wet room — tretching notes misses the fundamental frequency
somehow — stuttering but slightly better — less echo(?) — but
there are slight artifacts

trans. prev. WSOLA very good you hear that it is the streched version mainly because of
the first tone (Einschwingphase) and the longer echo — small
shortcomings at the end with the note that gets louder — some new
sound at offbeatspitch bends at the end — like 1 with some reverb
— there is some artifact, but it is positive (it has a positive effect)

WSOLA lots of artifacts in onsets — stretching notes misses the fundamental
frequency somehow — stuttering — echo — sound quality is low,
also the noise happens more in the end — sounds funny not
authentic but cool

Phase Vocoder echo lower volume — echo sounds weird — much echo! — sounds
very dull — nearly cannot capture the tone hight — empty and echo

POP3 MPEX4 very beginning sounded good and in between — minimal stuttering
— piano got chopped — the noise mixed in pitch are quite
annoying — sounds a bit “hollow”

trans. prev. WSOLA good in the middle — metallic, trembling notes — stuttering —
piano got chopped — keyboard sounds wierd — the noise mixed in
pitch are quite annoying — duplicated attacks — where did the
instruments go?

WSOLA metallic trembling notes — distortion — piano got chopped — the
noise mixed in pitch are quite annoying — duplicated attacks,
especially bad with piano — completely broken

Phase Vocoder wet room/lower volume — echo , metallic different — too many
artifacts — empty and falling apart

POP4 MPEX4 slightly metallic — drums bad, rest good — cool reverb — poor
vibrato

91

trans. prev. WSOLA distorted guitars — drums worse at end — drums in the end sound
wrong — distorted

WSOLA onset artifacts — distorted guitar — guitar doesnt get hurt too
much — drums at the end noisy — beginning is fine. at the end the
drum sound is pretty noisy — the vibrato visits too many other
scores

Phase Vocoder wet room — echowrong notes — destroyed — sounds dull — sound
quality is to low — not clear — broken

VIOLIN1 MPEX4 half tempo vibrato is horrible — vibrato is painfully slow — slightly
metallic — pitch is not clear — pitch? — the vibrato is broken

trans. prev. WSOLA sounds like onsets artifacts all over the piece — metallic half tempo
vibrato is horrible — distortion — slightly metallic — pitch is not
clear — metallic sound — the vibrato is broken and even distorted

WSOLA sounds like onsets artifacts all over the piece but stronger —
metallic half tempo vibrato is horrible — distortion — slightly
metallic — plastic — poor vibrato

Phase Vocoder wet room/alters sound — echometallic half tempo vibrato is
horrible — like chorus effect — flanger effect — far away — this
one is just empty and plastic like

92 APPENDIX C. LISTENING TEST COMMENTS

Appendix D

The Connector

We implemented the Connector like described in Chapter 8 as a plugin for the MATLAB
audio player developed by Philipp von Styp-Rekowsky [44]. Our implementation offers a
graphical user interface that allows for defining all necessary inputs to our tool like the
position and length of the transition region, the several degrees of freedom in the matching
process or the utilized database. Figure D.1 shows a screenshot of the tool.

Figure D.1. Screenshot of the Connector.

93

94 APPENDIX D. THE CONNECTOR

Bibliography

[1] D. Barry, D. Dorran, and E. Coyle, Time and pitch scale modification: A real-time
framework and tutorial, in Proceedings of the 11th International Conference on Digital Audio
Effects (DAFx-08), 9 2008.

[2] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M. B. Sandler,
A tutorial on onset detection in music signals, IEEE Transactions on Speech and Audio
Processing, 13 (2005), pp. 1035–1047.

[3] D. Cliff, Hang the dj: Automatic sequencing and seamless mixing of dance-music tracks,
tech. report, HP Laboratories Bristol, 2000.

[4] N. Collins, A comparison of sound onset detection algorithms with emphasis on psychoa-
coustically motivated detection functions, in AES Convention 118, Barcelona, Spain, 2005.

[5] , Using a pitch detector for onset detection, in Proceedings of the International Confer-
ence on Music Information Retrieval (ISMIR), London, UK, 2005, pp. 100–106.

[6] D. Cope, Experiments in Musical Intelligence, A-R Editions, Inc., 1996.

[7] N. Degara, A. Pena, M. E. P. Davies, and M. D. Plumbley, Note onset detection
using rhythmic structure, in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Dallas, TX, USA, 2010, pp. 5526–5529.

[8] S. Dixon, Evaluation of the audio beat tracking system beatroot, Journal of New Music Re-
search, 36 (2007), pp. 39–50.

[9] M. Dolson, The phase vocoder: A tutorial, Computer Music Journal, 10 (1986), pp. 14–27.

[10] M. Dolson and J. Laroche, Improved phase vocoder time-scale modification of audio, IEEE
Transactions on Speech and Audio Processing, 7 (1999), pp. 323–332.

[11] D. Dorran, E. Coyle, and R. Lawlor, Audio time-scale modification using a hybrid time-
frequency domain approach, in Proceedings Workshop on Applications of Signal Processing
(WASPAA), New Paltz, New York, USA, oct 2005.

[12] D. P. W. Ellis, A phase vocoder in Matlab, 2002. Web resource, last consulted in October
2011.

[13] , Beat tracking by dynamic programming, Journal of New Music Research, 36 (2007),
pp. 51–60.

[14] J. L. Flanagan and R. M. Golden, Phase vocoder, Bell System Technical Journal, 45
(1966), pp. 1493–1509.

[15] H. Friedman, Variable speech, Creative Computing, 9 (1983), p. 122.

[16] L. Gareth, Musimathics: The Mathematical Foundations of Music, Volume 1, The MIT
Press, 2006.

95

96 BIBLIOGRAPHY

[17] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, RWC music database: Popular,
classical and jazz music databases, in Proceedings of the International Conference on Music
Information Retrieval (ISMIR), Paris, France, 2002.

[18] P. Gournay, R. Lefebvre, and P.-A. Savard, Hybrid time-scale modification of audio,
in Audio Engineering Society Convention 122, 5 2007.

[19] S. Grofit and Y. Lavner, Time-scale modification of audio signals using enhanced wsola
with management of transients, IEEE Transactions on Audio, Speech & Language Processing,
16 (2008), pp. 106–115.

[20] P. Grosche and M. Müller, Extracting predominant local pulse information from mu-
sic recordings, IEEE Transactions on Audio, Speech and Language Processing, 19 (2011),
pp. 1688–1701.

[21] P. Grosche, M. Müller, and C. S. Sapp, What makes beat tracking difficult? A case
study on Chopin Mazurkas, in Proceedings of the 11th International Conference on Music
Information Retrieval (ISMIR), Utrecht, Netherlands, 2010, pp. 649–654.

[22] G. Haupenthal, Geschichte der Würfelmusik in Beispielen, PhD thesis, Universität des
Saarlandes, 1994.

[23] R. Hudson, Stolen time: the history of tempo rubato, Clarendon paperbacks, Clarendon
Press, 1994.

[24] T. Jehan, Creating Music by Listening, PhD thesis, Massachusetts Institute of Technology,
2005.

[25] N. Juillerat, S. M. Arisona, and S. Schubiger-Banz, A hybrid time and frequency
domain audio pitch shifting algorithm, in Audio Engineering Society Convention 125, 10 2008.

[26] G. Kaiser, A Friendly Guide to Wavelets, Birkhäuser, Boston, 1994.

[27] A. Klapuri, Sound onset detection by applying psychoacoustic knowledge, in Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Washington, DC, USA, 1999, pp. 3089–3092.

[28] A. P. Klapuri, A. J. Eronen, and J. Astola, Analysis of the meter of acoustic musical
signals, IEEE Transactions on Audio, Speech and Language Processing, 14 (2006), pp. 342–
355.

[29] P. Leveau, L. Daudet, and G. Richard, Methodology and tools for the evaluation of
automatic onset detection algorithms in music, in Proceedings of the International Conference
on Music Information Retrieval (ISMIR), Barcelona, Spain, 2004.

[30] H.-L. Lin, Y.-T. Lin, M.-C. Tien, and J.-L. Wu, Music paste: Concatenating music
clips based on chroma and rythm features, in 10th International Society for Music Information
Retreival Conference (ISMIR 2009), 2009, pp. 213–218.

[31] A. Moinet and T. Dutoit, PVSOLA: a phase vocoder with synchronized overlap-add, in
Proceedings of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris,
France, 2011, pp. 269–275.

[32] E. Moulines and F. Charpentier, Pitch-synchronous waveform processing techniques for
text-to-speech synthesis using diphones, Speech Communication, 9 (1990), pp. 453 – 467.

[33] M. Müller, Information Retrieval for Music and Motion, Springer Verlag, 2007.

[34] M. Müller, V. Konz, N. Jiang, and Z. Zuo, A multi-perspective user interface for music
signal analysis, in Proceedings of the International Computer Music Conference (ICMC),
Huddersfield, England, UK, 2011.

BIBLIOGRAPHY 97

[35] M. Müller, F. Kurth, and M. Clausen, Audio matching via chroma-based statistical
features, in Proceedings of the 6th International Conference on Music Information Retrieval
(ISMIR), 2005, pp. 288–295.

[36] T. H. Park, Introduction to Digital Signal Processing: Computer Musically Speaking, World
Scientific, 2010.

[37] S. Roucos and A. Wilgus, High quality time-scale modification for speech, in Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Tampa, Florida, USA, 1985, pp. 236–239.

[38] D. Schwarz, A system for data-driven concatenative sound synthesis, in Proceedings of the
COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, july 2000.

[39] , The caterpillar system for data-driven concatenative sound synthesis, in Proceedings of
the 6th International Conference on Digital Audio Effects (DAFX-03), London, UK, september
2003.

[40] , Current research in concatenative sound synthesis, in Proceedings of the International
Computer Music Conference (ICMC), Barcelona, Spain, september 2005.

[41] , Concatenative sound synthesis: The early years, Journal of New Music Reaserch, 35
(2006).

[42] W. A. Sethares, Rhythm and Transforms, Springer Publishing Company, Incorporated,
1st ed., 2007.

[43] W. Verhelst and M. Roelands, An overlap-add technique based on waveform similarity
(wsola) for high quality time-scale modification of speech, in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP), Minneapolis, USA,
1993.

[44] P. von Styp-Rekowsky, Towards time-adaptive feature design in music signal processing,
master’s thesis, Saarland University, 2011.

[45] S. Wenger and M. Magnor, Constrained example-based audio synthesis, in Proceedings of
the 2011 IEEE International Conference on Multimedia and Expo (ICME 2011), Barcelona,
Spain, July 2011.

98 BIBLIOGRAPHY

	Introduction
	Time-Scale Modification of Audio Signals
	Motivating Application
	The Connector
	Contribution
	Thesis Organization

	Basic Definitions, Notations and Tools
	Audio Signals
	Pitch Features
	Chroma Features
	Beat-Synchronous Chroma Features

	Time-Scale Modification
	Introduction
	Related Work
	General Definitions and Remarks

	WSOLA
	OLA
	Improvements to OLA - The WSOLA Algorithm
	Artifacts

	Phase Vocoder
	Short Time Fourier Transform
	Phase Vocoder Pipeline
	Phase Propagation
	Modifications for a simple implementation
	Artifacts

	Transient Preserving WSOLA
	Anchor Points
	Transient Detection
	Transient Preservation
	Limitations of the Transient Preservation

	Listening Test
	Test Dataset
	Test Setup
	Results

	The Connector's Pipeline
	Related Work
	Matching
	Query Pool
	Database
	Warping
	Blending

	Future Work
	Source Code
	Listening Test Questionnaire
	Listening Test Comments
	The Connector
	Bibliography

