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Abstract

Music constitutes a challenging multimedia scenario. Besides music recordings, there exist a

number of other media objects including symbolic music representations, video recordings, scanned

sheet music, or textual metadata. Developing tools that allow users to retrieve information from

different types of music-related data is central to the research area known as Music Information

Retrieval (MIR). This requires techniques from various engineering fields such as digital signal

processing, image processing, data management, and machine learning. In this thesis, we develop

novel multimedia processing techniques and explore their capabilities and limitations within

different complex music scenarios. The thesis consists of three main parts.

In the first part, we consider retrieval scenarios within a Western classical music setting. For

example, given a short monophonic melodic theme in symbolic notation as a query, retrieve

all corresponding documents in a collection of polyphonic music recordings. In another related

retrieval scenario, we aim to link the score of musical themes, scanned from book pages, to

their symbolic counterparts given in MIDI format. Both scenarios require mid-level feature

representations derived from different media types, as well as robust retrieval techniques that

can handle extraction errors and variations in the data.

The second part of this thesis deals with the extraction of musical parameters such as fundamental

frequencies or musical pitches from audio recordings. In this context, a general goal is to reduce

the variations in the degree of polyphony between monophonic queries and polyphonic music

databases. In our computational approach, we propose a data-driven method based on Deep

Neural Networks (DNNs) which aims at enhancing salient parts from jazz music recordings. As

an example application, we employ the learned model in a retrieval scenario where we take a

jazz solo transcription as a query to identify the corresponding music recording.

In the third part, we explore the potential of web-based user interfaces for researchers as well

as music lovers. We present several prototypical interfaces that offer various functionalities for

enabling access and navigation in musical content. Furthermore, these interfaces allow researchers

to show their results in an interactive fashion and reduce technical barriers when cooperating

with other researchers from related fields such as musicology.
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Zusammenfassung

Musik stellt ein anspruchsvolles Multimediaszenario dar. Neben den Musikaufnahmen existieren

eine Vielzahl von weiteren Medienobjekten (z. B. symbolisch kodierter Notentext, Videoaufnah-

men, gescannte Notentextseiten und weitere textbasierte Metadaten). Die Entwicklung von

Werkzeugen, die es einem Benutzer erlauben, unterschiedliche, musikalische Inhalte aufzufinden

und darauf zuzugreifen, ist eine zentrale Aufgabenstellung im Bereich des Music Information

Retrieval (MIR). Dies erfordert den Einsatz von Techniken aus unterschiedlichen Ingenieurs-

fachrichtung, wie beispielsweise der digitalen Signal- und Bildverarbeitung, dem Datenmanage-

ment oder dem maschinellen Lernen. In dieser Arbeit entwickeln wir neuartige Techniken der

Multimediaverarbeitung und untersuchen das Leistungsvermögen als auch die Grenzen dieser

Techniken in verschiedenen, komplexen Musikszenarien. Die Arbeit besteht aus drei Teilen.

Der erste Teil der Arbeit beschäftigt sich mit der automatisierten Musiksuche im Kontext

von klassischer Musik. Ein Ziel besteht darin, die zu einem kurzen, monophonen Musikthema

zugehörigen Musikaufnahmen in einem polyphonen Musikdatenbestand zu identifizieren. In

einem ähnlichen Suchszenario verknüpfen wir Musikthemen mit den zugehörigen Buchseiten,

die in gescannter Form vorliegen. Für beide Szenarien werden geeignete Merkmalsdarstellungen

benötigt, die zum einen die unterschiedlichen Medientypen zusammenführen können und zum

anderen robust gegen Extraktionsfehler und Variabilitäten in den Daten sind.

Der zweite Teil handelt von der Extraktion musikalischer Parameter aus den Audioaufnahmen

(z. B. der Grundfrequenz oder Tonhöhe). Im Zuge dieser Arbeit besteht ein Ziel darin, die

unterschiedlichen Polyphoniegrade monophoner Anfragen und polyphoner Musikdatenbestände

anzugleichen. In unserem datengetriebenen Ansatz trainieren wir dazu Neuronale Netzwerke, die

dominante Melodien in Jazzaufnahmen verstärken. In einer Beispielapplikation benutzen wir das

trainierte Modell in einem Suchszenario, bei dem Jazzsolotranskription als Anfragen verwendet

werden, um die dazugehörigen Musikaufnahmen zu identifizieren.

Im dritten Part untersuchen wir das Potenzial webbasierter Benutzerschnittstellen für die Verwen-

dung von Wissenschaftlern sowie Musikliebhabern. Dafür stellen wir prototypische Schnittstellen

vor, die eine Vielzahl an Funktionalitäten für den Zugriff auf und die Navigation in musikalischen

Inhalten ermöglichen. Diese Benutzerschnittstellen erlauben es, wissenschaftliche Ergebnisse

interaktiv darzustellen und zudem einen einfachen Zugriff zu ermöglichen, beispielsweise bei

interdisziplinären Kooperationen mit den Musikwissenschaften.
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Chapter 1

Introduction

Nowadays, anyone can record a musical performance at the press of a button. During the last

decades, a tremendous amount of professionally produced audio and video recordings has been

made available. Besides the actual music recordings, there exist a number of other media objects

which can be associated to a recorded performance, such as symbolic music representations,

scanned sheet music, or textual metadata. Tay Vaughan defines multimedia as a “woven

combination of digitally manipulated text, photographs, graphic art, sound, animation, and video

elements” [192, p. 1]. In this sense, music—with its many different facets—constitutes a very

rich multimedia scenario.

A central research question in the area known as Music Information Retrieval (MIR) is to

develop tools that create links between different, music-related media objects. Many approaches

follow the so-called query-by-example paradigm to link such objects: given a fragment of a

visual, symbolic, or acoustic music representation used as a query, the objective is to retrieve

all documents from a music database which contain aspects and parts that are similar to the

query [37, 130, 187]. A popular example for an audio-based retrieval system is Shazam, where,

given an audio snippet of a song as a query, the objective is to find the exact matches in the

music database. This task—also known as audio fingerprinting—is considered as basically solved.

However, when the query is only given as a short, monophonic melody, whether hummed or in

symbolic form, solving the task requires more flexible techniques. The system needs to deal with

a number of variations including tempo and tuning deviations, key transpositions, or differences

in the degree of polyphony between the query and the audio recordings in the reference database.

In particular, the differences in the degree of polyphony between the monophonic query and the

polyphonic music mixtures highly increase the task’s complexity.

In this context, an important research task is the extraction of the predominant melody from

music recordings. Traditional approaches often make use of manually designed features to

enhance the predominant voice in a music signal [164]. With the advent of data-driven methods,
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1. Introduction

many MIR tasks are now approached using Deep Neural Networks (DNNs). In the case of

predominant melody extraction, DNNs can be used to infer the relevant properties directly from

the data, without the need for handcrafted features. Such a trained DNN model can serve as a

preprocessing step in a retrieval scenario as described above to cope with the differences in the

degree of polyphony between query and database documents.

As a central application, retrieval techniques can be used to establish links between related

media objects. This is of particular interest in scenarios with distributed data sources such as

the Internet. In the case of musical content, a wealth of metadata (e. g., artist biography on

Wikipedia) is publicly available—sometimes even the music recordings themselves. Bringing

all these resources together opens up new possibilities for users to benefit from the richness

of the available data and can improve the listening experience. For example, web-based user

interfaces allow unified access to a variety of media objects from several resources. Furthermore,

such interfaces allow researchers to present results in an interactive fashion and reduce technical

barriers when cooperating with other researchers from related fields.

1.1 Structure

The thesis is divided into three main parts, as shown in Figure 1.1. In Part I, we consider the

book “A Dictionary of Musical Themes” [16] as an example for a complex music retrieval scenario.

The book contains roughly 10 000 musical themes that are about 4 bars long. The themes are

supposed to represent memorable excerpts from famous musical works, e. g., the “Fate-motif”

from the beginning of Beethoven’s 5th symphony. Additionally, there is a website with symbolic

MIDI (Musical Instrument Digital Interface) versions of these themes and a large music collection

with Western classical music that contains music recordings for many of those 10 000 musical

themes. In a first scenario, we use the MIDI version of the monophonic musical themes to

retrieve corresponding music recordings from this large music collection. Here, one main challenge

stems from the difference in the degree of polyphony between the monophonic query and the

polyphonic sound mixtures contained in the music recordings. Furthermore, the themes only have

a duration of a few measures and may deviate in tuning and tempo from the music recordings in

the collection. In a related retrieval scenario, we combine the symbolic MIDI representations of

the themes with scanned images of the book pages. This constitutes a challenging cross-modal

retrieval scenario that requires additional steps such as image segmentation and Optical Music

Recognition (OMR). Both scenarios require cross-modal feature representations that can be

derived from different media types as well as robust retrieval techniques that can tolerate errors

introduced by the conversion from scanned sheet music to a symbolic music representation.

In Part II, we present data-driven approaches for predominant melody enhancement. Many

conventional systems approach such retrieval tasks by first extracting the predominant melody

6
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Figure 1.1: Structure of the thesis. The thesis is divided into the three main parts: Retrieval,
Extraction, and Access. In each part, we develop novel processing techniques and explore their
capabilities and limitations within different complex music scenarios.

from the recording, then quantizing the extracted trajectory to musical pitches, and finally

comparing the resulting pitch sequence to the monophonic query [166]. In a first step, we

evaluate current state-of-the-art algorithms and their performance within a jazz music scenario.

Typically, the output of an algorithm is compared to a single reference annotation. However,

annotating music recordings almost always introduces subjective decisions made by the annotator,

i. e., different annotators create different annotations which may be equally valid. In our evaluation

approach, we analyze the influence of this annotator disagreement and its implications on the

results. Then, in our own approach to extract the predominant melody, we propose a data-driven

method. In particular, we use DNNs to extract and enhance salient parts from jazz music

recordings. The learned transformation can be considered as a kind of solo voice enhancement.

We then apply the learned model in a retrieval scenario where we take a jazz solo transcription

as a query to identify the corresponding music recording. Since DNN-based methods require

adjusting a large number of parameters, we explore the influence of different hyperparameter

settings in a jazz solo and walking bass transcription scenario.

In Part III, we indicate the potential of web-based user interfaces which allow easy access to

linked media objects. In a first scenario, we consider a research corpus called the Weimar Jazz

Database (WJD) as an example. As is the case with all research corpora that utilize commercial

music recordings, the annotations can only be released without the audio data, and are therefore

not fully usable by other researchers. However, there are publicly available videos on the Internet,

featuring many of the musical pieces contained in the WJD. In our approach, we link the
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1. Introduction

WJD’s music recordings with versions that are available on video platforms such as YouTube.

Furthermore, we introduce a user interface that allows users to explore and interact with the

annotations contained in the WJD. Finally, we integrate additional metadata from the Semantic

Web [19], including discographic metadata, artist biographies, and artist relationships. In another

multimedia scenario, we consider Richard Wagner’s opera Die Walküre as a complex multimedia

scenario. Based on suitable data structures and multimedia processing techniques, we develop a

cross-modal user interface that allows a music lover to access a particular video recording (e. g.,

on Youtube), which is automatically aligned to an available sheet music representation, enriched

with the libretto, and to other available resources about the musical work or the composer. With

these example scenarios, we illustrate the potential of modern web-based technologies to share

datasets and offer scientists in the digital humanities novel ways to access and interact with

digitized multimedia content.

1.2 Contributions

The main contributions of this thesis can be summarized as follows.

• Systematic study of a cross-modal retrieval application within a Western classical music

scenario. A special focus is set on measuring the influence that different factors—such as

tempo deviations or the difference in the degree of polyphony between query and database

documents—have on the retrieval performance (Chapter 2).

• A late-fusion approach that incorporates the results from text-based and score-based

retrieval approaches to improve the retrieval performance (Chapter 3).

• A systematic study on the influence of annotator disagreement in fundamental frequency

annotations (Chapter 4).

• A novel salience representation based on a data-driven approach (Chapter 5).

• An innovative approach to link scientific music databases including metadata, transcriptions

and further annotations to the corresponding audio recordings that are publicly available

on the Internet (Chapter 6).

• Modeling an opera as a multimedia scenario including a web-based user interface for

cross-model and interactive access to the media objects (Chapter 7).

• A detailed literature overview of DNN-based approaches for central MIR tasks with a

special focus on input representations and DNN architectures (Appendix B).
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on Music Information Retrieval (ISMIR), pages 246–252, New York City, USA, 2016.

[15] Stefan Balke, Christian Dittmar, Jakob Abeßer, Klaus Frieler, Martin Pfleiderer, and Meinard Müller.

Bridging the Gap: Enriching YouTube videos with jazz music annotations. submitted: Frontiers in Digital

Humanities, 2018.

[5] Stefan Balke and Meinard Müller. JazzTube: Linking the Weimar Jazz Database with YouTube. In Martin

Pfleiderer, Klaus Frieler, Jakob Abeßer, Wolf-Georg Zaddach, and Benjamin Burkhart, editors, Inside the

Jazzomat. New perspectives for jazz research, pages 315–317. Schott Campus, Mainz, Germany, 2017.

[14] Stefan Balke, Manuel Hiemer, Peter Schwab, Vlora Arifi-Müller, Klaus Meyer-Wegener, and Meinard Müller.

Die Oper als Multimedia Szenario: Wagners Walküren gehen online. In Proceedings of the GI Jahrestagung,
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doi: 10.1080/09298215.2017.1367405.
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basierter Werkzeuge für das Erlernen von Jazz-Piano. In Proceedings of the GI Jahrestagung, pages 61–73,

2017. doi: 10.18420/in2017 03.

[197] Nils Werner, Stefan Balke, Fabian-Robert Stöter, Meinard Müller, and Bernd Edler. trackswitch.js: A

versatile web-based audio player for presenting scientific results. In Proceedings of the Web Audio Conference

(WAC), 2017.

[55] Jonathan Driedger, Stefan Balke, Sebastian Ewert, and Meinard Müller. Template-based vibrato analysis of

music signals. In Proceedings of the International Conference on Music Information Retrieval (ISMIR),

pages 239–245, New York City, USA, 2016.
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Identifikation von Audioaufnahmen anhand symbolisch codierter musikalischer Themen. In Proceedings of

the Deutsche Jahrestagung für Akustik (DAGA), Nürnberg, Germany, 2015.

1.5 Acknowledgments

Looking back at the past four years at the International Audio Laboratories Erlangen, it is now

time to say thanks to a number of persons. At first, I want to express my deep gratitude to my

supervisor and mentor Meinard Müller. After some time in his group, I more and more realized

the luck I had when meeting him in late 2013—with almost no background in MIR but with a

passion for music and technology. He gave me the chance to grow as a researcher and the freedom

to pursue my research goals with full devotion. Thanks to the German Research Foundation

for financing my research over the years in several projects (MU 2686/6-1, MU 2686/7-1, MU

2686/11-1, MU 2686/12-1).

Over the years, I was lucky to work with many talented and inspiring researchers. To start with,

thanks to Meinard’s current and former research group members: Vlora Arifi-Müller, Nanzhu
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Chapter 2

Retrieving Audio Recordings Using

Musical Themes

In this chapter, we report on a systematic study considering a cross-modal retrieval scenario

which was originally published in [11, 4]. Using a musical theme from the book “A Dictionary of

Musical Themes” as a query, the objective is to identify all related music recordings from a given

audio collection of Western classical music. By adapting well-known retrieval techniques, our

main goal is to get a better understanding of the various challenges including tempo deviations,

musical tunings, key transpositions, and differences in the degree of polyphony between the

symbolic query and the audio recordings to be retrieved. In particular, we present an oracle

fusion approach that indicates upper performance limits achievable by a combination of current

retrieval techniques.

2.1 Introduction

There has been a rapid growth of digitally available music data including audio recordings,

digitized images of scanned sheet music, album covers, and an increasing number of video clips.

The huge amount of readily available music requires retrieval strategies that allow users to

explore large music collections in a convenient and enjoyable way. In the last decades, many

systems for content-based audio retrieval scenarios that follow the query-by-example paradigm

have been suggested. Given a fragment of a symbolic or acoustic music representation used

as a query, the task is to automatically retrieve documents from a music database containing

parts or aspects that are similar to the query [37, 80, 155, 187]. One such retrieval scenario is

known as query-by-humming [162, 166], where the user specifies a query by singing or humming

a part of a melody. The objective is then to identify all audio recordings (or other music
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Figure 2.1: Illustration of the matching procedure. (a) Sheet music representations of a musical
theme. (b) Chromagram of the query. (c) Music collection as a concatenated waveform. (d)
Chroma representation of the recordings in the music collection. (e) Matching function ∆.

representations) that contain a melody similar to the specified query. Similarly, the user may

specify a query by playing a characteristic phrase of a piece of music on an instrument [3, 120].

In a related retrieval scenario, the task is to identify an audio recording by means of a short

symbolic query, e.g., taken from a musical score [65, 148, 184]. In the context of digital music

libraries, content-based retrieval techniques are used to identify pieces in large archives which

have not yet been systematically annotated [44, 129].

The retrieval scenario considered in this chapter is inspired by the book “A Dictionary of Musical

Themes” by Barlow and Morgenstern [16], which contains roughly 10000 musical themes of

instrumental Western classical music. Published in the year 1949, this dictionary is an early

example of indexing music by its prominent themes. It was designed as a reference book for

trained musicians and professional performers to identify musical pieces by a short query fragment.

Most of the 10000 themes listed in the book [16] are also available as machine-readable versions

(MIDI) on the internet [172]. Further details can be found in Appendix A.

In this chapter, we consider a cross-modal retrieval scenario, where the queries are symbolic

encodings of musical themes and the database documents are audio recordings of musical

performances. Then, given a musical theme used as a query, the task is to identify the audio

recording of the musical work containing the theme. The retrieved documents may be displayed

by means of a ranked list. This retrieval scenario offers several challenges.

• Cross-modality. On the one hand, we deal with symbolic sheet music (or MIDI), and

with acoustic audio recordings on the other.

• Tuning. The tuning of the instruments, ensembles, and orchestras may differ from the
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standard tuning.

• Transposition. The key of a recorded performance may differ from the original key

notated in the sheet music (e.g., transposed versions adapted to instruments or voices).

• Tempo differences. Musicians do not play mechanically, but speed up at some passages

and slow down at others in order to shape a piece of music. This leads to global and local

tempo deviations between the query fragments and the performed database recordings.

• Polyphony. The symbolic themes are monophonic. However, in the database recording

they may appear in a polyphonic context, where the themes are often superimposed with

other voices, countermelodies, harmonies, and rhythms.

Additionally, there can be variations in instrumentation, timbre, or dynamics. Finally, the audio

quality of the recorded performances may be quite low, especially for old and noisy recordings.

The main motivation of this approach is to demonstrate the performance of standard music

retrieval techniques that were originally designed for audio matching and version identification [131,

Chapter 7]. By successively adjusting the retrieval pipeline, we perform an error analysis, gain

a deeper understanding of the data to be matched, and indicate potential and limitations of

current retrieval strategies. We think that this kind of error analysis using a baseline retrieval

system is essential before approaching the retrieval problem by introducing more sophisticated

and computationally expensive audio processing techniques, such as [120]. The remainder of

the chapter is structured as follows. In Section 2.2, we summarize the matching techniques and

formalize the retrieval task. Then, in Section 2.3, we conduct extensive experiments and discuss

our results. Further related work is discussed in the respective sections.

2.2 Matching Procedure

In this section, we summarize the retrieval procedure used here, following [131]. Similar procedures

for synchronizing polyphonic sheet music and audio recordings were described in the literature

[65, 184].

2.2.1 Chroma Features

Chroma features have been successfully used in solving different music-related search and analysis

tasks [71, 131]. These features strongly correlate with tonal (harmonic, melodic) components for

music whose pitches can be meaningfully categorized (often into 12 chromatic pitch classes) and

whose tuning approximates to the equal-tempered scale [105]. In particular, chroma features are
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2. Retrieving Audio Recordings Using Musical Themes

suited to serve as a mid-level feature representation for comparing and relating acoustical and

symbolic music, see Figure 2.1b and Figure 2.1d.

In our experiments (Section 2.3), we use the Chroma Toolbox [133] which uses a filterbank to

decompose the audio signal in the aforementioned pitch classes. In particular, we use a chroma

feature variant called CENS features. Starting with a feature rate of 10 Hz, we apply a temporal

smoothing over nine frames and a downsampling by a factor of two. This results in chroma

features at a rate of 5 Hz, as used in our experiments (Section 2.3).

2.2.2 Matching Technique

To compare a symbolic query to an audio recording contained in a music collection, we convert the

query and recording into chroma sequences, say X := (x1, x2, . . . , xN ) and Y := (y1, y2, . . . , yM ).

Typically, the length M ∈ N of Y is much larger than the length N ∈ N of the query X.

Then, we use a standard technique known as Subsequence Dynamic Time Warping (SDTW)

to compare X with subsequences of Y , see [130, Chapter 4]. In particular, we use the cosine

distance (for comparing normalized chroma feature vectors) and the step size condition Σ1 :=

{(1, 0), (0, 1), (1, 1)} in the SDTW. Furthermore, for the three possible step sizes, one may use

additional weights wv, wh, and wd, respectively. In the standard procedure, the weights are set

to wv = wh = wd = 1. In our later experiments, we use the weights to further penalize certain

steps. As the results of SDTW, one obtains a matching function ∆ : [1 : M ]→ R. Local minima

of ∆ point to locations with a good match between the query X and a subsequence of Y , as

indicated by the red circle in Figure 2.1e. For the details of this procedure and its parameters,

we refer to [130, Chapter 4].

2.2.3 Retrieval Task

In the following, we formalize our retrieval task. Let Q be a collection of musical themes, where

each element Q ∈ Q is regarded as a query. Furthermore, let D be a set of audio recordings,

which we regard as a database collection consisting of documents D ∈ D. Given a query Q ∈ Q,

the retrieval task is to identify the semantically corresponding documents D ∈ D. In this setting,

we are only interested in the associated audio recording of a given theme and not in its exact

position within the recording. Therefore, we compute a matching function ∆Q
D for Q and each of

the documents D ∈ D. Then, we define δQD = minm ∆Q
D(m) to be the distance between Q and D.

Finally, we sort the database documents D ∈ D in ascending order according to the values δQD.

The position of a document D in this ordered list is called the rank of D.

Figure 2.1 illustrates the matching procedure by using Beethoven’s “Fate-Motif” as query. First,

the given sheet music is transformed into a sequence of chroma features (see Figure 2.1a-b). In
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Queries #Themes Database #Recordings Duration

Q1 177 D1 100 ∼11 h
Q2 2046 D2 1113 ∼120 h

Table 2.1: Overview of the datasets used for our experiments. Further details are given in
Appendix A.

this example, our database consists of two audio recordings (see Figure 2.1c), which are also

converted into chroma-based feature sequences (see Figure 2.1d). The matching functions ∆Q
D

are shown in Figure 2.1e. Red circles indicate the positions of the minima δQD for each document

D. In this example, the matching function yields two distinct minima in the first document

(Beethoven) at the beginning and after roughly 100 s. This is due to the fact that the motif,

which is used as query, occurs several times in this work. In our document level scenario, both

minima are considered to be correct matches as we are only interested in the entire recording

and not in the exact position of the queried theme.

2.3 Experiments

We now report on our experiments using queries from the book by Barlow and Morgenstern,

where we successively adapt the described matching procedure. Our main motivation is to gain

a better understanding of the challenges regarding musical tuning, key transpositions, tempo

deviation, and the degree of polyphony.

2.3.1 Test Datasets

The symbolic queries as given in the book by Barlow and Morgenstern [16] are available on the

internet as MIDI files [172] in the “Electronic Dictionary of Musical Themes” (in the following

referred to as EDM). We denote the 9803 themes from EDM by Q. Furthermore, let D be a

collection of audio recordings D ∈ D.

We created two query test datasets, as shown by Table 2.1. The first dataset Q1 consists of 177

queries and serves as a development testset. The second test dataset Q2 contains 2046 queries

and is used to investigate the scalability of the matching technique. In both test datasets, the

durations of the queries ranges roughly between 1 s and 19 s with a mean of 7.5 s.

Additionally, we design two collections D1 and D2, which contain exactly one audio recording

representing a true match of the queries contained in Q1 and Q2, respectively. Note that the

number of queries is higher than the number of recordings because for a given musical piece,

several themes may be listed in the book by Barlow and Morgenstern; e.g., there are six musical

themes listed for the first movement of Beethoven’s 5th Symphony. A detailed overview about
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2. Retrieving Audio Recordings Using Musical Themes

the datasets can be obtained from Appendix A.

2.3.2 Evaluation Measures

In our evaluations, we compare a query Q ∈ Q with each of the documents D ∈ D. This results

in a ranked list of the documents D ∈ D, where (due to the design of our test datasets D1 and

D2) one of these documents is considered relevant. Inspired by a search-engine-like retrieval

scenario, where a user typically looks at the top match and then may also check the first five,

ten or twenty matches, we evaluate the top K matches for K ∈ {1, 5, 10, 20}. For a given K,

the query is considered to be correct if its retrieved rank is at most K. Considering all queries

at question, we then compute the proportion of correct queries (w.r.t. K). This results in a

number ρK ∈ [0 : 100] (given in percent), which we refer to as Top-K matching rate. Considering

different values for K gives us insights in the distribution of the ranks and the system’s retrieval

performance.

2.3.3 Experiments using Q1 and D1

We start with a first series of experiments based on Q1 and D1, where we systematically adapt

various parameter settings while reducing the retrieval task’s complexity by exploiting additional

knowledge. We then aggregate the obtained results by means of an oracle fusion. This result

indicates the upper limit for the performance that is achievable when using the suggested

matching pipeline. Table 2.2 gives an overview of the results, which we now discuss in detail by

exemplarily considering the results for ρ1 and ρ10.

Baseline. As a preliminary experiment, we use Σ1 for the step size condition and wv = wh =

wd = 1 as weights. This yields Top-K matching rates of ρ1 = 38.4% and ρ10 = 62.7%. To increase

the system’s robustness, we restrict the SDTW procedure by using a different step size condition

Σ. In general, using the set Σ1 may lead to alignment paths that are highly deteriorated. In

the extreme case, the query X may be assigned to a single element of Y . Therefore, it may

be beneficial to replace Σ1 with the set Σ2 = {(2, 1), (1, 2), (1, 1)}, which yields a compromise

between a strict diagonal matching (without any warping, Σ0 = {(1, 1)}) and the DTW-based

matching with full flexibility (using Σ1). Furthermore, to avoid the query X being matched

against a very short subsequence of Y , we set the weights to wv = 2, wh = 1, and wd = 1.

Similar settings have been used, e. g., in [132]. With these settings, we slightly improve the Top-K

matching rates to ρ1 = 45.2% and ρ10 = 70.1% (see also “Baseline” in Table 2.2). In general,

using the set Σ1 may lead to alignment paths that are highly deteriorated. In the extreme case,

the sequence X may be assigned to a single element of Y . Therefore, it may be beneficial to

replace Σ1 with the set Σ2 = {(2, 1), (1, 2), (1, 1)}, which yields a compromise between a strict

diagonal matching (without any warping, Σ0 = {(1, 1)}) and the DTW-based matching with full
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Top-K 1 5 10 20

Baseline 45.2 62.1 70.1 76.8
Tu 46.9 64.4 72.9 81.9
Tr 52.0 68.9 79.1 87.6
Tu+Tr 53.7 72.3 83.1 91.0
Tu+Tr+Ql 68.4 79.1 88.1 93.2
Tu+Tr+Ql+Df 37.3 57.6 67.8 74.6

Oracle Fusion 72.3 84.7 92.1 97.7

Table 2.2: Top-K matching rate for music collection D1 with corresponding musical themes Q1

used as queries. The following settings are considered: Tu = Tuning estimation, Tr = Annotated
transposition, Ql = Annotated query length, Df = Dominant feature band.

flexibility (using Σ1). For details on the implementation and initialization of D when using Σ2,

we refer to [130, Chapter 7]. In the following, we continue using Σ2 and the weights wv = 2,

wh = 1, and wd = 1.

Tuning (Tu) and Transposition (Tr). Deviations from the standard tuning in the actual

music recording can lead to misinterpretations of the measured pitch. Estimating the tuning used

in the music recording beforehand can reduce these artifacts [71]. Instead of using a dedicated

tuning estimator, we simply test three different tunings by detuning the filterbank by ±1/3

semitones used to compute the chroma features (see Section 2.2.1). We then pick the tuning

which yields the smallest minimum δQD. For a detailed description of a similar procedure, we

refer to [71, 135]. This further improves the matching rates to ρ1 = 46.9% and ρ10 = 72.9%.

As the musical key of the audio recording may differ from the key specified in the MIDI, we

manually annotated the required transposition. Using this information in the matching procedure

(by applying suitable chroma shifts [72]), the results improve to ρ1 = 52.0% and ρ10 = 79.1%.

Combining both, the tuning estimation and the correct transposition, we get Top-K matching

rates of ρ1 = 53.7% and ρ10 = 83.1%.

Query Length (Ql). We observed that the tempo events in some of our MIDI queries are

set to an extreme parameter, which results in a query duration that strongly deviates from

the corresponding passage in the audio recording. When the tempo information deviates

too much from the audio recording, SDTW based on Σ2 is unable to warp the query to the

corresponding audio section. Furthermore, the features may lose important characteristics. For

instance, the beginning theme of Beethoven’s Pathétique has a MIDI duration of 3.5 s, whereas

the corresponding section in the audio recording has a duration of 21 s. To even out tempo

differences, we manually annotated the durations of the audio sections corresponding to queries

and used this information to adapt the duration of the query before calculating the chroma

features. This further increases the matching rate to ρ1 = 68.4% and ρ10 = 88.1%.

Dominant Feature Band (Df). In the next experiment, we want to compensate for the
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Figure 2.2: Example of Chopin’s Prélude Op. 28, No. 15 (“Raindrop”). (a) Chromagram of
monophonic query. (b) Chromagram of the corresponding section in the audio recording. (c)
Sheet music representation of the corresponding measures.

different degrees of polyphony. Looking at the chromagram of the monophonic musical theme

in Figure 2.1b reveals that only one chroma band is active at a time. For database documents

as shown in Figure 2.1d, however, the energy is spread across several chroma bands due to

the instruments’ partials and accompaniments. A first method to reduce the polyphony on

the audio side is to only take the dominant chroma band (the band with the largest value)

for each time frame. This can be thought of as “monofying” the database document in the

mid-level feature representation. Using this monofied chroma representation results in a matching

rate of ρ1 = 37.3% and ρ10 = 67.8%. Even though this procedure works for some cases, for

others it may pick the “wrong” chroma band, thus deteriorating the overall retrieval result.

Further experiments showed that more refined methods (by extracting the predominant melody

as described in [164]), may lead to slightly better results. However, Figure 2.2a shows a typical

example where the advanced methods still fail, since the salient energy is located in the A[-band

(see Figure 2.2b), which is the accompaniment played with the left hand (see Figure 2.2c) and

not the part we would perceive as being the main melody.

Oracle Fusion. In this experiment we assume having an oracle which can tell us, for each query,

which setting performs best (in the sense that the relevant document is ranked better). The

results obtained from oracle fusion yield a kind of upper limit which can be reached by using

the suggested matching pipeline. Performing the oracle fusion for all queries leads to matching

rates of ρ1 = 72.3% and ρ10 = 92.1% (see Table 2.2). Oracle fusion shows that our matching

pipeline may yield good retrieval results. However, a good prior estimate of transposition and

tempo is important. Also, as we see in our next experiment, the results do not scale well when

considering much larger datasets.
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Top-K 1 5 10 20 50 100 200 500

Tu+Tr+5 s 14.9 21.8 25.8 29.2 35.5 43.0 54.1 76.1
Tu+Tr+10 s 18.3 25.1 28.3 32.6 38.7 46.1 56.1 76.2
Tu+Tr+15 s 13.6 19.5 22.7 26.1 31.6 38.9 49.7 72.4

Oracle Fusion 25.0 34.1 39.0 43.5 51.0 59.6 70.2 86.9

Table 2.3: Top-K matching rate for music collection D2 with corresponding musical themes
Q2 used as queries. The following settings are considered: Tu = Tuning estimation, Tr =
Transposition offset [−2 : 2], {5, 10, 15} s = Fixed query length.

2.3.4 Experiments using Q2 and D2

We now expand the experiments using the larger datasets Q2 (consisting of 2046 musical themes)

and D2 (consisting of 1113 audio recordings). In this case, we do not have any knowledge of

transposition and tempo information. One strategy to cope with different transpositions is

to simply try out all 12 possibilities by suitably shifting the queries’ chromagrams [72]. This,

however, also increases the chance of obtaining false positive matches. Analyzing the annotations

from D1, it turns out that most of the transpositions lie within [−2 : 2] semitones. Therefore,

in subsequent experiments, we only use these five transpositions, instead of all twelve possible

chroma shifts. As for the query length, the durations of the annotated sections in D1 are within

3 s and 30 s. To cover this range, the duration of each query (EDM MIDI) is set to 5 s, 10 s, and

15 s, respectively. The results of the Top-K matching rates are shown in Table 2.3. For example,

when using a query length of 5 s, the the matching rates are ρ1 = 14.9% and ρ10 = 25.8%.

Using different query lengths (10 s and 15 s) does not substantially improve the retrieval results.

However, using an oracle fusion over the different query lengths, the retrieval results substantially

improve, leading to matching rates of ρ1 = 25.0% and ρ10 = 39.0%. In other words, even when

using alignment methods to compensate for local tempo differences, a good initial estimate for

the query duration is an essential step to improve the matching results.

Concluding these experiments, one can say that the retrieval of audio recordings by means of

short monophonic musical themes is a challenging problem due to the challenges listed in the

introduction (Section 2.1). We have seen that a direct application of a standard chroma-based

matching procedure yields reasonable results for roughly half of the queries. However, the

compensation of tuning issues and tempo differences is of major importance. The used matching

procedure is simple to implement and has the potential for applying indexing techniques to speed

up computations [79].

Differences in the degree of polyphony remain one main problem when matching monophonic

themes against music recordings. In this context, simply taking the dominant feature band, as in

our experiment in Section 2.3.3, turned out to even worsen the matching quality. (This was also

the reason why we did not used this strategy in our experiment of Section 2.3.4.) One promising
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Figure 2.3: Main GUI window. The retrieval results in form of ranking values are mapped to a
grid of boxes. The columns represent the audio recordings from the database and the rows the
musical themes which were used as query. A green background is used to indicate ground truth
annotations (the most relevant document).

approach, as suggested in [120], is to use NMF-based techniques to decompose the audio recording

into monophonic-like components. These techniques, however, are computationally expensive

and do not easily scale to recordings of long duration and large datasets. The development

of scalable techniques to match monophonic and polyphonic music representations remain a

research direction with many challenging problems.

2.4 Graphical User Interface

In this section, we present a graphical user interface (GUI) which we developed to systematically

evaluate the matching results. The purpose of this GUI is to identify the challenges of this

particular retrieval scenario and gain more insights into the used data. Figure 2.3 shows the

main window of the GUI. The top row shows the audio recordings D contained in the database

and the first left column lists the used queries Q. By pushing one of the oval rectangles, one can

inspect the calculated feature representation and listen to the audio or to a sonified version of the

musical theme, respectively. For example, Figure 2.4a shows the chroma feature representation

of query Q9 and the blue bar indicates the current position of the playback.

In the middle of Figure 2.3, we show all retrieval results as a grid of boxes. Additionally, the green

background indicates the most relevant match as obtained from manual annotations. By pushing

one of the boxes, the cost matrix of the corresponding best matching segment is visualized, see

Figure 2.4b. Additionally, the warping path between the query and this segment is shown as
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(a) (b)

Figure 2.4: (a) Chroma feature representation of the monophonic theme. The blue bar indicates
the playing position. (b) Visualization of the match in the audio recording. The plot shows the
cost matrix with the actual warping path obtained from the SDTW. The green bar indicates
annotations from the ground truth.

a red line. The green bar at the bottom incorporates the exact position of the query from the

manual annotations. In the case of the shown example, the retrieval result is correct as the

relevant database document is identified as the first element of the ranked list.

Furthermore, by sonifying the retrieval results, we get a feeling for the problems and challenges

the algorithm faces when dealing with this kind of music. We do this by playing back the

audio recording at the position of the estimated match and additionally acoustically overlay

this recording with a sonified version of the time-aligned query. In this way, the GUI can make

results from a retrieval system more accessible and also audible. Poorly performing matches

can be analyzed and the gained knowledge can possibly be integrated into future versions of the

retrieval algorithm.

2.5 Conclusion and Future Work

In this chapter, we have presented some baseline experiments for identifying audio recordings

by means of musical themes. Due to musical and acoustic variations in the data as well as the

typically short duration of the query, the matching task turned out to be quite challenging.

Besides gaining some deeper insights into the challenges and underlying data, we still see potential

of the considered retrieval techniques—in particular within a cross-modal search context. For

example, in the case of the Barlow–Morgenstern scenario, the book contains textual specifications

of the themes besides the visual score representations of the notes. Similarly, structured websites

(e.g., Wikipedia websites) often contain information of various types including text, score, images,

and audio. By exploiting multiple types of information sources, fusion strategies may help to

better cope with uncertainty and inconsistency in heterogeneous data collections (see [136]). In

the next chapter, we present a fusion approach for identifying musical themes (given in MIDI
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format) based on corrupted OMR and OCR input. The further investigation of such cross-modal

fusion approaches, including audio, image, and text-based cues, constitutes a promising research

direction.
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Chapter 3

Matching Musical Themes based on

Noisy OCR and OMR Input

In this chapter, we deal with the problem of automatically matching the the themes from the

book “A Dictionary of Musical Themes” to other digitally available sources. We hereby closely

follow our original contribution presented in [8].

In 1949, Barlow and Morgenstern released the book “A Dictionary of Musical Themes” which

contains 9803 themes of well-known instrumental pieces from the corpus of Western Classical

music [16]. These monophonic themes (usually four bars long) are often the most memorable parts

of a piece of music. To this end, we introduce a processing pipeline that automatically extracts

from the scanned pages of the printed book textual metadata using Optical Character Recognition

(OCR) as well as symbolic note information using Optical Music Recognition (OMR). Due to the

poor printing quality of the book, the OCR and OMR results are quite noisy containing numerous

extraction errors. As one main contribution, we adjust alignment techniques for matching musical

themes based on the OCR and OMR input. In particular, we show how the matching quality

can be substantially improved by fusing the OCR- and OMR-based matching results. Finally, we

report on our experiments within the challenging Barlow and Morgenstern scenario, which also

indicates the potential of our techniques when considering other sources of musical themes such

as digital music archives and the world wide web.

3.1 Introduction

There has been a rapid growth of digitally available music data including audio recordings,

digitized images of scanned sheet music, album covers and an increasing number of video clips.

The huge amount of readily available music requires retrieval strategies that allow users to
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Figure 3.1: Overview of the processing pipeline. Each page is segmented into text and sheet music
parts. The cropped images are transformed into computer readable representations using OCR
and OMR (typical extraction errors are highlighted by a red circle). The results are used to query
against a database consisting of music documents. Using a fusion strategy based on text-based
and score-based matching results, the retrieval system outputs a ranked list of documents.

explore large music collections in a convenient and enjoyable way [52, 136, 141, 148, 173]. In this

chapter, we focus on Western classical music, where a piece of music is typically specified by the

composer, some work identifier such as a catalogue or opus number, and other types of metadata.

For example, the musical work number Op. 67 by Ludwig van Beethoven specifies his Symphony

No. 5 in C minor, the symphony with the famous fate motif. Besides such textual descriptions,

Western classical music is given in form of printed sheet music, which visually encodes the notes

to be played by musicians. Thanks to massive digitization efforts like the International Music

Score Library Project1 (IMSLP), millions of digitized pages of sheet music are publicly available

on the world wide web.

Handling music collections of this size, one requires analysis and retrieval techniques for the

various kinds of representations and formats. One important step consists in extracting the textual

metadata as well as the note information from the digitized images. To this end, techniques

such as Optical Character Recognition (OCR) to extract text-based metadata and Optical Music

Recognition (OMR) to extract symbolic representations from the digital scans of printed sheet

music are needed [18, 33, 66, 159, 158]. Besides of inconsistencies in the metadata that describes

a musical work, the OCR and OMR may contain a significant number of extraction errors. This

particularly holds for books of poor printing quality and scans of low resolution.

In this chapter, we deal with a challenging matching scenario by considering the book “A

1http://www.imslp.org/
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Dictionary of Musical Themes” by Barlow and Morgenstern [16]. This book yields an overview

of the most important musical themes from the Western classical music literature, thus covering

many of the pieces contained in IMSLP. The contributions of this chapter are as follows. First,

we describe a fully automated processing pipeline that matches the music themes from the

book by Barlow and Morgenstern to other digitally available sources. This pipeline involves

segmentation, OCR, OMR, and alignment techniques (see Section 3.2 and Figure 3.1). Then, we

report on extensive experiments that indicate the retrieval quality based on inconsistent and

erroneous OCR and OMR input (see Section 3.3). In particular, we show how the quality can

be significantly improved by fusing the OCR-based and OMR-based matching results. Finally,

we discuss how our processing pipeline may be applied to automatically identify, retrieve, and

annotate musical sources that are distributed in digital music archives and the world wide web.

3.2 Processing Pipeline

3.2.1 Text and Score Recognition

As starting point for our matching scenario, we use the book by Barlow and Morgenstern [16],

which contains 9803 musical themes from the most important compositions of the Western

classical music literature. The book includes orchestral music, chamber music, and works for

solo instruments. Each theme is specified by a textual specification as well as a visual score

representation of the notes. In particular, the respective composer, the underlying musical work,

and the movement are listed. Within the book, the themes are systematically organized and

suitably indexed.

An example for a scanned page of the book is shown in Figure 3.1a. The excerpt shows text-based

metadata as well as score information. The composer is written on the top of each page (e. g.,

“Beethoven”), whereas the title of each musical work (e. g., “Symphony No. 5 in C Minor”) is

specified in a text box aligned to the left. Furthermore, each theme is further specified by a

movement and theme description (e. g., “1st Movement, 1st Theme, A”) followed by a score

representation of the theme. Finally, an additional identifier (e. g., “B948”), which is used for

indexing purposes, is printed at the end of each theme.

As this example shows, the book is structured in a systematic fashion, even though the positions

of the various text boxes may slightly vary from theme to theme and page to page. Using

heuristics on the layout of the book, we first automatically segment each page by determining for

each of the themes the bounding boxes of the various text elements and the image containing the

score information. In particular, we exploit the knowledge on the rough position of the elements

as well as the characteristic horizontal staff lines of the score. This yields a segmentation result

as indicated in Figure 3.1b. Because of the regular structure of the pages, the bounding boxes
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computed by our algorithm are correct for more than 99% of the themes. One problem is that

the bounding boxes for the score representations may intersect with previous and subsequent

bounding boxes, which often results in unwanted score fragments as highlighted in Figure 3.1b.

The text boxes are further processed by feeding in the cropped images into an OCR engine.

In our processing pipeline, we have used the freely available OCR engine Tesseract [179]. As

indicated by Figure 3.1, the recognition results are of good overall quality with occasional errors

on the character level. In our example, the string “1st” has been recognized as “Ist” and “C

Minor” was transcribed as “G Minor”. Because of its prominent placement, the larger font size,

and the capitalization, the extraction of the composers’ names (e. g., “BEETHOVEN”) works

particularly well.

The score information is processed by feeding in the cropped images into an OMR engine. For

this task, we use the freely available OMR software Audiveris [20]. As can be seen by our

example, the score conversion is more problematic than in the case of text. On the one hand,

many extraction errors occur on the note level. In our example, some of the note lengths were

not detected correctly, the fermata is missing, and an additional note has been added in the

last measure. Some of these errors come from score fragments due to the above mentioned

intersection problem of the bounding boxes. On the other hand, there are recognition errors that

have a global impact on the interpretation of the pitch parameters of the notes. In particular,

the recognition of the key and time signatures as well as the kind of clef (e.g. G-clef, C-clef or

F-clef) has turned out to be problematic. In the example of Figure 3.1c, the OMR engine could

not detect the three flats of the key signature, which affects the interpretation of the fourth note

(the E flat becomes an E). Most of the errors are due to the poor printing quality of the book by

Barlow and Morgenstern. Experiments with different scan resolutions and other OMR engines

(e. g., PhotoScore, SharpEye or SmartScore) have not resolved these problems. As we will show

in the next section, the influence of the extraction errors can be attenuated by designing suitable

cost functions and matching procedures.

3.2.2 Matching Procedures

As a result of the previously described recognition process, we obtain a textual representation of

the metadata (containing the composer, work identifier, and other metadata) and a symbolic

score representation for each of the 9803 themes of the book by Barlow and Morgenstern (in

the following referred to as BM). The goal is to use this information for identifying other digital

sources that belong or relate to the musical themes. In our experiments, we consider a scenario

that allows us to study various matching procedures and to systematically evaluate matching

results. To this end, we consider the “Electronic Dictionary of Musical Themes” (in the following

referred to as EDM), which is publicly available at [172]. The EDM collection contains standard
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MIDI files for the musical themes, which are linked to textual metadata similar to the original

book by Barlow and Morgenstern. While the EDM themes more or less agree with the BM

themes, there are inconsistencies with regard to the number of themes, the metadata and the

score representations. Using the printed BM book as a reference, we have manually linked the

BM themes to corresponding EDM themes. These correspondences serve as ground truth in the

subsequent experiments.

In the following, we formulate our setting as a retrieval task. We denote the set of BM themes

by Q, where each element Q ∈ Q is regarded as a query. Furthermore, let D be the set of EDM

themes, which we regard as a database collection consisting of documents D ∈ D. Given a query

Q ∈ Q, the retrieval task is to identify the semantically corresponding document D ∈ D.

3.2.3 Text-based Matching

Let us consider a fixed query Q ∈ Q. In a first matching procedure, we only consider the textual

representation, denoted by Qt, which was obtained from the OCR step. Similarly, let Dt denote

the text information for a document D ∈ D. Both Qt as well as Dt are represented as character

strings. To compare these strings, one can use standard string alignment techniques such as

the edit distance [42]. In our scenario, the two strings to be compared both contain the name

of the composer, some work descriptor as well as a movement and theme identifier. However,

the strings may also differ substantially due to additional information, segmentation errors, and

OCR errors. Therefore, to compare strings, we use the longest common subsequence (LCS),

which is a variant of the edit distance that is more robust to noise and outliers. For a description

of this standard similarity measure, we refer to [42]. We convert the LCS-based similarity value

into a normalized cost value by defining

ct(Q,D) := 1− LCS(Qt, Dt)

|Qt|
∈ [0, 1], (3.1)

where |Qt| denotes the length of the string Qt. The performance of this matching procedure is

discussed in Section 3.3.

3.2.4 Score-based Matching

Next, we define a matching procedure that only considers the score representation of the query

Q ∈ Q resulting from the OMR step. In a first step, we convert the OMR result into a piano-roll

like representation as indicated by Figure 3.1d. Dealing with monophonic themes (a property

that may be corrupted by the OMR step), we consider the upper pitch contour of the OMR

result. Since OMR often fails at detecting the correct note durations but tends to correctly

recognize the bar lines, we do not use the note durations but locally resample the pitch sequence
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Figure 3.2: Comparison of the number of top K matches for the different procedures.

to match the bar line constraints, see Figure 3.1e. This results in a sequence of pitch values.

Furthermore, since OMR often misinterprets the global clef, we convert the pitch sequence into a

sequence of intervals (differences of subsequent pitches), see Figure 3.1f. The interval sequence,

denoted by Qs, is used for the matching step. Similarly, we process a document D ∈ D, this time

starting with a MIDI representation. The resulting interval sequence is denoted by Ds.

The OMR also often fails in detecting accidentals of notes, so that a pitch may be changed by

one semitone. Using the edit distance would punish a deviation of one semitone to the same

extent as larger deviations. Therefore, we use a local cost measure that takes the amount of the

deviations into account. For two given intervals, say a, b ∈ N0, we define the distance by

δ(a, b) =
min{|a− b|, 12}

12
∈ [0, 1]. (3.2)

In this definition, we cap the value by 12 (an octave) to be robust to extreme outliers and then

normalize the value. Based on this distance, we use standard dynamic time warping (DTW)—as

described in [130, Chapter 4]—to obtain

cs(Q,D) :=
DTW(Qs, Ds)

|Qs|
. (3.3)

Again we normalize by the length |Qs|. In the next section, we discuss the performance of the

OCR-based and OMR-based matching procedures and show how they can be combined to further

improve the results.

3.3 Retrieval Experiments

We now evaluate the proposed matching procedures within a retrieval setting. In this scenario,

we consider the set D of EDM themes as a database collection of unknown musical themes.
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Procedure OCR OMR Fusion Oracle Fusion

Mean rank 7.04 1186.26 6.24 3.34
Mean rank (capped) 3.64 9.63 2.96 2.24

Table 3.1: Mean ranks for the four different matching procedures. The capped mean ranks are
computed by replacing the ranks above K = 20 to the value 21.

Using a BM theme Q ∈ Q as query, the task is to identify the database document that musically

corresponds to the query. Note that in this retrieval scenario there is exactly one relevant

document for each query.

In our evaluation, we compare the query Q with each of the documents D ∈ D and consider

the top K matches for some number K ∈ N. In a search-engine-like retrieval scenario, a user

typically first looks at the top match and then may also check the first five, ten or twenty matches

at most. Therefore, in the following, we consider the values K ∈ {1, 5, 10, 20}. In the case

that the top K matches contain the relevant document, we say that the retrieval process has

been successful. Conducting the retrieval process for all 9803 queries Q ∈ Q, we then count the

number of successful cases. Figure 3.2 shows the matching results for K ∈ {1, 5, 10, 20} using

four different matching procedures based on the text-based procedure from Section 3.2.3, the

score-based procedure from Section 3.2.4, and two fusion procedures to be explained.

Let us start with a discussion of the text-based matching result. Considering the top match

(K = 1), the retrieval system has been successful for 5354 of the 9803 queries, i. e., in 54.6% of all

cases. Considering the top five matches (K = 5), the number of successful cases increases to 8156

queries (83.2%). This improvement can be explained by the fact that the specifications of the

musical themes from the same work often differ in only a few characters, e. g. “1st Movement, 1st

Theme, A” versus “2nd Movement, 1st Theme, B”. Such small differences may lead to confusion

among the top matches in the presence of OCR errors. Considering K = 20, one obtains 9225

successful cases (94.1%), which indicates that the text-based retrieval alone already yields a good

overall retrieval quality.

Next, let us have a look at the score-based matching. In the case K = 1, the score-based

retrieval has been successful for 4342 of the 9803 queries (44.3%). This much lower number

(compared to the text-based procedure) reflects the fact that the OMR step introduces a large

number of substantial errors. For example, an inspection showed that, for 1794 queries, the

OMR engine was not able to produce a usable score representation. In these cases, the matching

procedure was regarded as not successful. Increasing K, the results naturally improve reaching

5889 successful cases for K = 20 (60.1%). To get a better picture on the overall quality of the

matching procedures, we have also analyzed the ranking positions of the relevant documents.

Recall that we obtain for each query a ranked list of the documents D ∈ D, where one of these

documents is considered relevant. We determine the rank of this document for each query and
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then compute a mean rank by averaging these ranks over all possible Q ∈ Q. The mean ranks for

all four considered matching procedures are shown in Table 3.1. The text-based procedure yields

a mean rank of 7.04, whereas the score-based procedure results in a mean rank of 1186.26. The

poor mean rank in the score-based case is the result of the unavailability of any score information

for 1794 queries as mentioned above, where we set the rank to the value 4901 (half the size of Q).

Reducing the effect of outliers, we capped the rank by the value 21 (meaning that the rank is

beyond K = 20). The mean rank of the capped values is 3.64 for the text-based and 9.63 for the

score-based case. This again demonstrates that the text-based result is in average much more

reliable than the score-based one.

Still, the score-based matching yields qualitatively different results than the text-based matching.

We demonstrate this by fusing the matching results obtained by the two types of information.

In a first experiment, we assume to have an oracle that tells us for each query which of the

matching procedures performs better (in the sense that the relevant document is ranked better).

The results obtained from this oracle fusion procedure yield a kind of upper limit for the joint

performance of the text-based and score-based matching procedures. The results for the different

values K are shown in Figure 3.2, while the mean rank can be found in Table 3.1. For example,

one obtains 7315 (74.6%) successful cases for K = 1, increasing to 9592 (97.8%) for K = 20. This

shows that the text-based matching can be significantly improved when including the score-based

information.

We now present a fusion strategy that does not exploit any oracle knowledge. The text-based

matching result is taken as the basis and then refined using the score-based information. The first

assumption is that the top match is particularly reliable in the case that both, the text-based and

score-based matching procedures, yield the same top match. The second (weaker) assumption is

that the score-based top match is somewhat reliable when it is contained in the text-based K = 20

top matches. The third assumption is that the score-based result is particularly reliable in the

case that the cost measure defined in (3.3) of the score-based first (top) match is significantly

lower than the cost of the subsequent second match. Based on these assumptions, we use the

ranked list of the text-based matching procedure and possibly replace the top match when the

condition of the second or third assumption holds whereas the conditions of the first assumption

does not hold. This simple fusion strategy yields matching results as indicated by Figure 3.2

and Table 3.1. In particular, for K = 1, the fusion strategy yields 6809 (69.5%) successful cases

which is close to the upper limit 7315 (74.6%) obtained by oracle fusion.

Instead of presenting the exact details at this point, we only wanted to indicate the potential of

fusing matching results. Using more refined fusion procedures could lead to results which are

even closer to the upper limit indicated by oracle fusion.
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Figure 3.3: Example for a typical Wikipedia website contain various types of information (text,
score, image, audio).

3.4 Applications and Conclusions

In this chapter, we have presented techniques for matching text-based and score-based musical

information. As a case study, we used the sources from the book by Barlow and Morgenstern to

serve as query input, while the EDM collection was used for evaluation purposes to serve as an

example collection of digitally available musical items.

Going beyond the described (somehow controlled) scenario, we see potential of music information

retrieval techniques for a much wider range of application scenarios. As mentioned in the

introduction, there are millions of digitized pages of sheet music publicly available on the world

wide web. Furthermore, music website as available at Wikipedia often contain information

of various types including text, score, images, and audio, as shown in Figure 3.3. Often the

description of musical works is enriched with audio examples and score fragments of musical

themes. Using similar techniques as described in this chapter, one can use such structured

websites to automatically derive text-based and score-based queries (and queries of other types

of information such as audio or video) to look for musically related documents on the world wide

web. For example, using the work specification (Beethoven, Symphony No. 5) and the score

excerpt from Figure 3.3, one may want to retrieve sheet music representations from IMSLP or

resources from less structured websites.
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One main contribution of this chapter was to show that matching procedures based on possibly

corrupted score input (e. g., coming from OMR) may still be a valuable component, in particular

within a fusion scenario where an existing classifier should be further improved.

Fusion strategies that exploit multiple types of information sources will play an important role

to better cope with uncertainty and inconsistency in heterogeneous data collections, see [136]. In

this context, audio-related information has been studied extensively, see, e. g., [148, 173, 107].

Future work will be concerned with integrating all available sources that describe a musical work

in order to identify, retrieve, and annotate musical sources that are distributed on the world wide

web.
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Chapter 4

Towards Evaluating Multiple

Predominant Melody Annotations in

Jazz Recordings

In this chapter, we analyze inter-annotator disagreement in predominant melody annotations,

closely following the results presented in [10].

Melody estimation algorithms are typically evaluated by separately assessing the task of voice

activity detection and fundamental frequency estimation. For both subtasks, computed results

are typically compared to a single human reference annotation. This is problematic since different

human experts may differ in how they specify a predominant melody, thus leading to a pool of

equally valid reference annotations. In this chapter, we address the problem of evaluating melody

extraction algorithms within a jazz music scenario. Using four human and two automatically

computed annotations, we discuss the limitations of standard evaluation measures and introduce

an adaptation of Fleiss’ kappa that can better account for multiple reference annotations. Our

experiments not only highlight the behavior of the different evaluation measures, but also give

deeper insights into the melody extraction task.

4.1 Introduction

Predominant melody extraction is the task of estimating an audio recording’s fundamental

frequency trajectory values (F0) over time which correspond to the melody. For example

in classical jazz recordings, the predominant melody is typically played by a soloist who is

accompanied by a rhythm section (e. g., consisting of piano, drums, and bass). When estimating

the soloist’s F0-trajectory by means of an automated method, one needs to deal with two issues:
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Figure 4.1: Illustration of different annotations and possible disagreements. A1 and A2 are based
on a fine frequency resolution. Annotation A3 is based on a coarser grid of musical pitches.

First, to determine the time instances when the soloist is active. Second, to estimate the course

of the soloist’s F0 values at active time instances.

A common way to evaluate such an automated approach—as also used in the Music Information

Retrieval Evaluation eXchange (MIREX) [53]—is to split the evaluation into the two subtasks

of activity detection and F0 estimation. These subtasks are then evaluated by comparing

the computed results to a single manually created reference annotation. Such an evaluation,

however, is problematic since it assumes the existence of a single ground-truth. In practice,

different humans may annotate the same recording in different ways thus leading to a low

inter-annotator agreement. Possible reasons are the lack of an exact task specification, the

differences in the annotators’ experiences, or the usage of different annotation tools [165, 167].

Figure 4.1 exemplarily illustrates such variations on the basis of three annotations A1, ..., A3 of

the same audio recording, where a soloist plays three consecutive notes. A first observation is

that A1 and A2 have a fine frequency resolution which can capture fluctuations over time (e. g.,

vibrato effects). In contrast, A3 is specified on the basis of semitones which is common when

considering tasks such as music transcription. Furthermore, one can see that note onsets, note

transitions, and durations are annotated inconsistently. Reasons for this might be differences in

annotators’ familiarity with a given instrument, genre, or a particular playing style. In particular,

annotation deviations are likely to occur when notes are connected by slurs or glissandi.

Inter-annotator disagreement is a generally known problem and has previously been discussed

in the contexts of audio music similarity [95, 64], music structure analysis [178, 138, 144], and

melody extraction [29]. In general, a single reference annotation can only reflect a subset of the

musically or perceptually valid interpretations for a given music recording, thus rendering the
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SoloID Performer Title Instr. Dur.

Bech-ST Sidney Bechet Summertime Sopr. Sax 197
Brow-JO Clifford Brown Jordu Trumpet 118
Brow-JS Clifford Brown Joy Spring Trumpet 100
Brow-SD Clifford Brown Sandu Trumpet 048
Colt-BT John Coltrane Blue Train Ten. Sax 168
Full-BT Curtis Fuller Blue Train Trombone 112
Getz-IP Stan Getz The Girl from Ipanema Ten. Sax 081
Shor-FP Wayne Shorter Footprints Ten. Sax 139

Table 4.1: List of solo excerpts taken from the WJD. The table indicates the performing artist,
the title, the solo instrument, and the duration of the solo (given in seconds).

common practice of evaluating against a single annotation questionable.

The contributions of this chapter are as follows. First, we report on experiments, where

several humans annotate the predominant F0-trajectory for eight jazz recordings. These human

annotations are then compared with computed annotations obtained by automated procedures

(MELODIA [164] and pYIN [121]) (Section 4.2). In particular, we consider the scenario of soloist

activity detection for jazz recordings (Section 4.3.1). Afterwards, we adapt and apply an existing

measure (Fleiss’ Kappa [63]) to our scenario which can account for jointly evaluating multiple

annotations (Section 4.3.2). Note that this chapter has an accompanying website at [7] where

one can find the annotations which we use in the experiments.

4.2 Experimental Setup

In this work, we use a selection of eight jazz recordings from the Weimar Jazz Database

(WJD) [68, 147]. For each of these eight recordings (see Table 4.1), we have a pool of seven

annotations A = {A1, . . . , A7} which all represent different estimates of the predominant solo

instruments’ F0-trajectories. In the following, we model an annotation as a discrete-time function

A : [1 : N ] → R∪{∗} which assigns to each time index n ∈ [1 : N ] either the solo’s F0 at that

time instance (given in Hertz), or the symbol ‘∗’. The meaning of A(n) = ∗ is that the soloist is

inactive at that time instance.

In Table 4.2, we list the seven annotations. For this work, we manually created three annotations

A1, . . . , A3 by using a custom graphical user interface as shown in Figure 4.2 (see also [54]). In

addition to standard audio player functionalities, the interface’s central element is a salience

spectrogram [164]—an enhanced time–frequency representation with a logarithmically-spaced

frequency axis. An annotator can indicate the approximate location of F0-trajectories in the

salience spectrogram by drawing constraint regions (blue rectangles). The tool then automatically

uses techniques based on dynamic programming [131] to find a plausible trajectory through the
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Figure 4.2: Screenshot of the tool used for the manual annotation of the F0 trajectories.

specified region. The annotator can then check the annotation by listening to the solo recording,

along with a synchronized sonification of the F0-trajectory.

In addition to the audio recordings, the WJD also includes manually annotated solo transcriptions

on the semitone level. These were created and cross-checked by trained jazz musicians using the

Sonic Visualiser [35]. We use these solo transcriptions to derive A4 by interpreting the given

musical pitches as F0 values by using the pitches’ center frequencies.

A5 and A6 are created by means of automated methods. A5 is extracted by using the MELO-

DIA [164] algorithm as implemented in Essentia [28] using the default settings (sample rate =

22050 Hz, hop size = 3 ms, window size = 46 ms). For obtaining A6, we use the tool Tony [122]

(which is based on the pYIN algorithm [121]) with default settings and without any corrections

of the F0-trajectory.

As a final annotation, we also consider a baseline A7(n) = 1 kHz for all n ∈ [1 : N ]. Intuitively,

this baseline assumes the soloist to be always active. All of these annotations are available on

this chapter’s accompanying website [7].

4.3 Soloist Activity Detection

In this section, we focus on the evaluation of the soloist activity detection task. This activity is

derived from the annotations of the F0-trajectories A1, . . . , A7 by only considering active time

instances, i. e., A(n) 6= ∗. Figure 4.3 shows a typical excerpt from the soloist activity annotations
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Annotation Description

A1 Human 1, F0-Annotation-Tool
A2 Human 2, F0-Annotation-Tool
A3 Human 3, F0-Annotation-Tool
A4 Human 4, WJD, Sonic Visualiser
A5 Computed, MELODIA [164, 28]
A6 Computed, pYIN [121]
A7 Baseline, all time instances active at 1 kHz

Table 4.2: Set A of all annotations with information about their origins.

for the recording Brow-JO. Each row of this matrix shows the annotated activity for one of our

annotations from Table 4.2. Black denotes regions where the soloist is annotated as active and

white where the soloist is annotated as inactive. Especially note onsets and durations strongly

vary among the annotation, see e. g., the different durations of the note event at second 7.8.

Furthermore, a missing note event is noticeable in the annotations A1 and A6 at second 7.6. At

second 8.2, A6 found an additional note event which is not visible in the other annotations. This

example indicates that the inter-annotator agreement may be low. To further understand the

inter-annotator agreement in our dataset, we first use standard evaluation measures (e. g., as used

by MIREX for the task of audio melody extraction [127]) and discuss the results. Afterwards, we

introduce Fleiss’ Kappa, an evaluation measure known from psychology, which can account for

multiple annotations.

4.3.1 Standard Evaluation Measures

As discussed in the previous section, an estimated annotation Ae is typically evaluated by

comparing it to a reference annotation Ar. For the pair (Ar, Ae), one can count the number of

time instances that are true positives #TP (Ar and Ae both label the soloist as being active),

the number of false positives #FP (only Ae labels the soloist as being active), the number of

true negatives #TN (Ar and Ae both label the soloist as being inactive), and the number false

negatives #FN (only Ae labels the soloist as being inactive).

In previous MIREX campaigns, these numbers are used to derive two evaluation measures for

the task of activity detection. Voicing Detection (VD) is identical to Recall and describes the

ratio that a time instance which is annotated as being active is truly active according to the

reference annotation:

VD =
#TP

#TP + #FN
. (4.1)

The second measure is the Voicing False Alarm (VFA) and relates the ratio of time instances
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Figure 4.3: Excerpt from Brow-JO. A1, . . . , A4 show the human annotations. A5 and A6 are
results from automated approaches. A7 is the baseline annotation which considers all frames as
being active.

Ref.
Est.

A1 A2 A3 A4 A5 A6 A7 ∅

A1 − 0.93 0.98 0.92 0.74 0.79 1.00 0.89
A2 0.92 − 0.97 0.92 0.74 0.79 1.00 0.89
A3 0.84 0.84 − 0.88 0.69 0.74 1.00 0.83
A4 0.85 0.86 0.94 − 0.70 0.75 1.00 0.85
A5 0.84 0.84 0.90 0.85 − 0.77 1.00 0.87
A6 0.75 0.76 0.81 0.77 0.65 − 1.00 0.79
A7 0.62 0.62 0.71 0.67 0.55 0.65 − 0.64

∅ 0.80 0.81 0.89 0.83 0.68 0.75 1.00 0.82

Table 4.3: Pairwise evaluation: Voicing Detection (VD). The values are obtained by calculating
the VD for all possible annotation pairs (Table 4.2) and all solo recordings (Table 4.1). These
values are then aggregated by using the arithmetic mean.

which are inactive according to the reference annotation but are estimated as being active:

VFA =
#FP

#TN + #FP
. (4.2)

In the following experiments, we assume that all annotations A1, . . . , A7 ∈ A have the same

status, i. e., each annotation may be regarded as either reference or estimate. Then, we apply

the standard measures in a pairwise fashion. For all pairs (Ar, Ae) ∈ A×A with Ar 6= Ae, we

extract VD and VFA (using the MIR EVAL [156] toolbox) for each of the solo recordings listed

in Table 4.1. The mean values over the eight recordings are presented in Table 4.3 for the

VD-measure and in Table 4.4 for the VFA-measure.

As for the Voicing Detection (Table 4.3), the values within the human annotators A1, . . . , A4

range from 0.84 for the pair (A3, A2) to 0.98 for the pair (A1, A3). This high variation in
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Ref.
Est.

A1 A2 A3 A4 A5 A6 A7 ∅

A1 − 0.13 0.30 0.27 0.22 0.44 1.00 0.39
A2 0.12 − 0.29 0.26 0.22 0.43 1.00 0.39
A3 0.05 0.07 − 0.14 0.18 0.43 1.00 0.31
A4 0.16 0.16 0.27 − 0.24 0.46 1.00 0.38
A5 0.34 0.35 0.48 0.44 − 0.49 1.00 0.52
A6 0.38 0.38 0.54 0.49 0.35 − 1.00 0.52
A7 0.00 0.00 0.00 0.00 0.00 0.00 − 0.00

∅ 0.17 0.18 0.31 0.27 0.20 0.38 1.00 0.36

Table 4.4: Pairwise evaluation: Voicing False Alarm (VFA). The values are obtained by calculating
the VFA for all possible annotation pairs (Table 4.2) and all solo recordings (Table 4.1). These
values are then aggregated by using the arithmetic mean.

VD already shows that the inter-annotator disagreement even within the human annotators is

substantial. By taking the human annotators as reference to evaluate the automatic approach

A5, the VD lies in the range of 0.69 for (A3, A5) to 0.74 for (A2, A5). Analogously, for A6, we

observe values from 0.74 for (A3, A6) to 0.79 for (A1, A6).

As for the Voicing False Alarm (see Table 4.4), the values among the human annotations range

from 0.05 for (A3, A1) to 0.30 for (A1, A3). Especially annotation A3 deviates from the other

human annotations, resulting in a very high VFA (having many time instances being set as

active).

In conclusion, depending on which human annotation we take as the reference, the evaluated

performances of the automated methods vary substantially. Having multiple potential reference

annotations, the standard measures are not generalizable to take these into account (only by

considering a mean over all pairs). Furthermore, although the presented evaluation measures are

by design limited to yield values in [0, 1], they can usually not be interpreted without some kind

of baseline. For example, considering VD, the pair (A2, A3) yields a VD-value of 0.97, suggesting

that A3 can be considered as an “excellent” estimate. However, considering that our uninformed

baseline A7 yields a VD of 1.0, shows that it is meaningless to look at the VD alone. Similarly,

an agreement with the trivial annotation A7 only reflects the statistics on the active and inactive

frames, thus being rather uninformative. Next, we introduce an evaluation measure that can

overcome some of these problems.

4.3.2 Fleiss’ Kappa

Having to deal with multiple human annotations is common in fields such as medicine or

psychology. In these disciplines, measures that can account for multiple annotations have been

developed. Furthermore, to compensate for chance-based agreement, a general concept referred
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n = 1 2 3 4 5
A1

A2

A3

k = 1 1 3 0 1 2 7/15
k = 2 2 0 3 2 1 8/15

1/3 1 1 1/3 1/3
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k
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n

(a)

(b)

Figure 4.4: Example of evaluating Fleiss’ κ for K = 2 categories, N = 5 frames, and three
different annotations. (a) Annotations. (b) Number of annotations per category and time
instance. Combining Ao = 0.6 and Ae = 0.5 leads to κ = 0.2.

< 0 0− 0.2 0.21− 0.4 0.41− 0.6 0.61− 0.8 0.81− 1

poor slight fair moderate substantial almost perfect

Table 4.5: Scale for interpreting κ as given by [109].

to as Kappa Statistic [63] is used. In general, a kappa value lies in the range of [−1, 1], where the

value 1 means complete agreement among the raters, the value 0 means that the agreement is

purely based on chance, and a value below 0 means that agreement is even below chance.

We now adapt Fleiss’ Kappa to calculate the chance-corrected inter-annotator agreement for the

soloist activity detection task. Following [63, 109], Fleiss’ Kappa is defined as:

κ :=
Ao −Ae

1−Ae
. (4.3)

In general, κ compares the mean observed agreement Ao ∈ [0, 1] to the mean expected agreement

Ae ∈ [0, 1] which is solely based on chance. Table 4.5 shows a scale for the agreement of

annotations with the corresponding range of κ.

To give a better feeling for how κ works, we exemplarily calculate κ for the example given in

Figure 4.4(a). In this example, we have R = 3 different annotations A1, . . . , A3 for N = 5 time

instances. For each time instance, the annotations belong to either of K = 2 categories (active

or inactive). As a first step, for each time instance, we add up the annotations for each category.

This yields the number of annotations per category an,k ∈ N, n ∈ [1 : N ], k ∈ [1 : K] which is

shown in Figure 4.4(b). Based on these distributions, we calculate the observed agreement Aon
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SoloID
Comb.

κH κH,5 κH,6 ρ5 ρ6

Bech-ST 0.74 0.60 0.55 0.82 0.75
Brow-JO 0.68 0.56 0.59 0.82 0.87
Brow-JS 0.61 0.47 0.43 0.78 0.71
Brow-SD 0.70 0.61 0.51 0.87 0.73
Colt-BT 0.66 0.55 0.49 0.84 0.74
Full-BT 0.74 0.66 0.61 0.89 0.83
Getz-IP 0.72 0.69 0.64 0.96 0.90
Shor-FP 0.82 0.65 0.58 0.80 0.70

∅ 0.71 0.60 0.55 0.85 0.78

Table 4.6: κ for all songs and different pools of annotations. κH denotes the pool of human
annotations A1, . . . , A4. These values are then aggregated by using the arithmetic mean.

for a single time instance n ∈ [1 : N ] as:

Aon :=
1

R(R− 1)

K∑
k=1

an,k(an,k − 1) , (4.4)

which is the fraction of agreeing annotations normalized by the number of possible annotator

pairs R(R − 1), e. g., for the time instance n = 2 in the example, all annotators agree for the

frame to be active, thus Ao2 = 1. Taking the arithmetic mean of all observed agreements leads to

the mean observed agreement

Ao :=
1

N

N∑
n=1

Aon , (4.5)

in our example Ao = 0.6. The remaining part for calculating κ is the expected agreement Ae.

First, we calculate the distribution of agreements within each category k ∈ [1 : K], normalized

by the number of possible ratings NR:

Aek :=
1

NR

N∑
n=1

an,k , (4.6)

e. g., in our example for k = 1 (active) results in Ae1 = 7/15. The expected agreement Ae is defined

as [63]

Ae :=

K∑
k=1

(Aek)
2 (4.7)

which leads to κ = 0.2 for our example. According to the scale given in Table 4.5, this is a “slight”

agreement.

In Table 4.6, we show the results for κ calculated for different pools of annotations. First, we

calculate κ for the pool of human annotations H := {1, 2, 3, 4}, denoted as κH . κH yields values

ranging from 0.61 to 0.82 which is considered as “substantial” to “almost perfect” agreement
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Figure 4.5: Raw Pitch Accuracy (RPA) for different pairs of annotations based on the annotations
of the solo recording Brow-JO, evaluated on all active frames according to the reference annotation.

according to Table 4.5.

Now, reverting to our initial task of evaluating an automatically obtained annotation, the idea is

to see how the κ-value changes when adding this annotation to the pool of all human annotations.

A given automated procedure could then be considered to work correctly if it produces results

that are just about as variable as the human annotations. Only if an automated procedure

behaves fundamentally different than the human annotations, it will be considered to work

incorrectly. In our case, calculating κ for the annotation pool H ∪ {5} yields values ranging from

0.47 to 0.69, as shown in column κH,5 of Table 4.6. Considering the annotation pool H ∪ {6},
κH,6 results in κ-values ranging from 0.43 to 0.64. Considering the average over all individual

recordings, we get mean κ-values of 0.60 and 0.55 for κH,5 and κH,6, respectively. Comparing

these mean κ-values for the automated approaches to the respective κH , we can consider the

method producing the annotation A5 to be more consistent with the human annotations than

A6.

In order to quantify the agreement of an automatically generated annotation and the human

annotations in a single value, we define the proportion ρ ∈ R as

ρ5 :=
κH,5

κH
, ρ6 :=

κH,6

κH
. (4.8)

One can interpret ρ as some kind of “normalization” according to the inter-annotator agreement

of the humans. For example, solo recording Brow-JS obtains the lowest agreement of κH = 0.61

in our test set. The algorithms perform “moderate” with κH,5 = 0.47 and κH,6 = 0.43. This

moderate performance is partly alleviated when normalizing with the relatively low human

agreement, leading to ρ5 = 0.78 and ρ6 = 0.71. On the other hand, for the solo recording

Shor-FP, the human annotators had an “almost perfect” agreement of κH,6 = 0.82. While the
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Figure 4.6: Modified Raw Pitch Accuracy for different pairs of annotations based on the anno-
tations of the solo recording Brow-JO, evaluated on all active frames according to the union of
reference and estimate annotation.

automated method’s approaches were “substantial” with κH,5 = 0.65 and “moderate” with

κH,6 = 0.58. However, although the automated method’s κ-values are higher than for Brow-JS,

investigating the proportions ρ5 and ρ6 reveal that the automated method’s relative agreement

with the human annotations is actually the same (ρ5 = 0.78 and ρ5 = 0.71 for Brow-JS compared

to ρ5 = 0.80 and ρ5 = 0.70 for Shor-FP). This indicates the ρ-value’s potential as an evaluation

measure that can account for multiple human reference annotations in a meaningful way.

4.4 F0 Estimation

One of the used standard measures for the evaluation of the F0 estimation in MIREX is the

Raw Pitch Accuracy (RPA) which is computed for a pair of annotations (Ar, Ae) consisting of a

reference Ar and an estimate annotation Ae. The core concept of this measure is to label an F0

estimate Ae(n) to be correct, if its F0-value deviates from Ar(n) by at most a fixed tolerance

τ ∈ R (usually τ = 50 cent). Figure 4.5 shows the RPA for different annotation pairs and

different tolerances τ ∈ {1, 10, 20, 30, 40, 50} (given in cent) for the solo recording Brow-JO, as

computed by MIR EVAL. For example, looking at the pair (A1, A4), we see that the RPA ascends

with increasing value of τ . The reason for this becomes obvious when looking at Figure 4.7.

While A1 was created with the goal of having fine grained F0-trajectories, annotations A4 was

created with a transcription scenario in mind. Therefore, the RPA is low for very small τ but

becomes almost perfect when considering a tolerance of half a semitone (τ = 50 cent).

Another interesting observation in Figure 4.5 is that the annotation pairs (A1, A2) and (A1, A3)

yield almost constant high RPA-values. This is the case since both annotations were created using
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Figure 4.7: Excerpt from the annotations of the solo Brow-JO of A1 and A4.

the same annotation tool—yielding very similar F0-trajectories. However, it is noteworthy that

there seems to be a “glass ceiling” that cannot be exceeded even for high τ -values. The reason for

this lies in the exact definition of the RPA as used for MIREX. Let µ(A) := {n ∈ [1 : N ] : A(n) 6=
∗} be the set of all active time instances of some annotation in A. By definition, the RPA is only

evaluated on the reference annotation’s active time instances µ(Ar), where each n ∈ µ(Ar)\µ(Ae)

is regarded as an incorrect time instance (for any τ). In other words, although the term “Raw

Pitch Accuracy” suggests that this measure purely reflects correct F0-estimates, it is implicitly

biased by the activity detection of the reference annotation. Figure 4.8 shows an excerpt of

the human annotations A1 and A2 for the solo recording Brow-JO. While the F0-trajectories

are quite similar, they differ in the annotated activity. In A1, we see that transitions between

consecutive notes are often annotated continuously—reflecting glissandi or slurs. This is not the

case in A2, where the annotation rather reflects individual note events. A musically motivated

explanation could be that A1’s annotator had a performance analysis scenario in mind where

note transitions are an interesting aspect, whereas A2’s annotator could have been more focused

on a transcription task. Although both annotations are musically meaningful, when calculating

the RPA for (A1, A2), all time instances where A1 is active and A2 not, are counted as incorrect

(independent of τ)—causing the glass ceiling.

As an alternative approach that decouples the activity detection from the F0 estimation, one

could evaluate the RPA only on those time instances, where reference and estimate annotation

are active, i. e., µ(Ar) ∪ µ(Ae). This leads to the modified RPA-values as shown in Figure 4.6.

Compared to Figure 4.5, all curves are shifted towards higher RPA-values. In particular, the pair

(A1, A2) yields modified RPA-values close to one, irrespective of the tolerance τ—now indicating

that A1 and A2 coincide perfectly in terms of F0 estimation.

However, it is important to note that the modified RPA evaluation measure may not be an

expressive measure on its own. For example, in the case that two annotations are almost disjoint

in terms of activity, the modified RPA would only be computed on the basis of a very small

number of time instances, thus being statistically meaningless. Therefore, to rate a computational
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Figure 4.8: Excerpt from the annotations of the solo Brow-JO of A1 and A2.

approach’s performance, it is necessary to consider both, the evaluation of the activity detection

as well as the F0 estimation, simultaneously but independent of each other. Both evaluations give

valuable perspectives on the computational approach’s performance for the task of predominant

melody estimation and therefore help to get a better understanding of the underlying problems.

4.5 Conclusion

In this chapter, we investigated the evaluation of automatic approaches for the task of predominant

melody estimation—a task that can be subdivided into the subtask of soloist activity detection

and F0 estimation. The evaluation of this task is not straightforward since the existence of a single

“ground-truth” reference annotation is questionable. After having reviewed standard evaluation

measures used in the field, one of our main contributions was to adapt Fleiss’ Kappa—a measure

which accounts for multiple reference annotations. We then explicitly defined and discussed

Fleiss’ Kappa for the task of the soloist activity detection.

The core motivation for using Fleiss’ Kappa as an evaluation measure was to consider an

automatic approach to work correctly, if its results were just about as variable as the human

annotations. We therefore extended this kappa measure by normalizing it by the variability

of the human annotations. The resulting ρ-values allow for quantifying the agreement of an

automatically generated annotation and the human annotations in a single value.

For the task of F0 estimation, we showed that the standard evaluation measures are biased

by the activity detection task. This is problematic, since mixing both subtasks can obfuscate

insights into advantages and drawbacks of a tested predominant melody estimation procedure.

We therefore proposed an alternative formulation for RPA which decoupled the two tasks.
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Chapter 5

Data-Driven Solo Voice

Enhancement for Jazz Music

Retrieval

This chapter is based on our contributions presented in [13]. The results presented in Section 5.5,

which were obtained by a close cooperation with Jakob Abeßer, were originally published in [1].

Retrieving short monophonic queries in music recordings is a challenging research problem in Music

Information Retrieval (MIR). In jazz music, given a solo transcription, one retrieval task is to find

the corresponding (potentially polyphonic) recording in a music collection. Many conventional

systems approach such retrieval tasks by first extracting the predominant F0-trajectory from the

recording, then quantizing the extracted trajectory to musical pitches and finally comparing the

resulting pitch sequence to the monophonic query. In this chapter, we introduce a data-driven

approach that avoids the hard decisions involved in conventional approaches: Given pairs of

time–frequency (TF) representations of full music recordings and TF representations of solo

transcriptions, we use a DNN-based approach to learn a mapping for transforming a “polyphonic”

TF representation into a “monophonic” TF representation. This transform can be considered as

a kind of solo voice enhancement. We evaluate our approach within a jazz solo retrieval scenario

and compare it to a state-of-the-art method for predominant melody extraction.

5.1 Introduction

The internet offers a large amount of digital multimedia content—including audio recordings,

digitized images of scanned sheet music, album covers, and an increasing number of video clips.

The huge amount of readily available music requires retrieval strategies that allow users to
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explore large music collections in a convenient and enjoyable way [113]. In this chapter, we

consider the retrieval scenario of identifying jazz solo transcriptions in a collection of music

recordings, see Figure 5.1. When presented in a musical theme retrieval scenario for classical

music [11], this task offers various challenges, e. g., local and global tempo changes, tuning

deviations, or key transpositions. Jazz solos usually consist of a predominant solo instrument

(e. g., trumpet, saxophone, clarinet, trombone) playing simultaneously with the accompaniment of

the rhythm group (e. g., piano, bass, drums). This typical interaction between the musicians leads

to a complex mixture of melodic and percussive sources in the music recording. Consequently,

retrieving monophonic pitch sequences of a transcribed solo can be very difficult due to the

influence of the additional instruments in the accompaniment.

In this approach, we propose a data-driven approach for enhancing the solo voice in jazz recordings

with the goal to improve the retrieval results. As our main technical contribution, we adapt

a DNN architecture originally intended for music source separation [188] to train a model for

enhancing the solo voice in jazz music recordings. Given the time–frequency (TF) representation

of an audio recording as input for the DNN and a jazz solo transcription similar to a piano

roll as the target TF representation, the training goal is to learn a mapping between both

representations which enhances the solo voice and attenuates the accompaniment.

Throughout this work, we use the jazz solo transcriptions and music recordings provided by the

Weimar Jazz Database (WJD). The WJD consists of 299 (as of August 2016) transcriptions of

instrumental solos in jazz recordings performed by a wide range of renowned jazz musicians.

The solos have been manually annotated and verified by musicology and jazz students at the

Liszt School of Music Weimar as part of the Jazzomat Research Project [147]. Furthermore,

the database contains more musical annotations (e. g., beats, boundaries, etc.) including basic

meta-data of the jazz recording itself (i. e., artist, record name, etc.). A motivation for improving

the considered retrieval scenario is to connect the WJD with other resources available online,

e. g., YouTube. This way, the user could benefit from the additional annotations provided by the

WJD while exploring jazz music.

The remainder of this chapter is structured as follows. In Section 5.2, we discuss related works

for cross-modal retrieval and solo voice enhancement approaches. In Section 5.3, we introduce

our DNN-based approach for solo voice enhancement. In particular, we explain the chosen DNN

architecture, specify our training strategy, and report on the DNN’s performance using the

WJD. In Section 5.4, we evaluate our approach within the aforementioned retrieval scenario and

compare it against a baseline and a conventional state-of-the-art system. In our experiments, we

show that our DNN-based approach improves the retrieval quality over the baseline and performs

comparably to the state-of-the-art approach. Finally, in Section 5.5, we apply similar techniques

to the task of bass line transcription which indicates the scalability to non-salient instruments.
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Figure 5.1: Illustration of the retrieval scenario. Given a jazz solo transcription used as a query,
the task is to identify the music recording containing the solo. By enhancing the solo voice, we
reduce the influence of the accompaniment in order to increase the retrieval results.

5.2 Related Work

Many systems for content-based audio retrieval that follow the query-by-example paradigm

have been suggested [65, 148, 184, 37, 80, 187]. One such retrieval scenario is known as query-

by-humming [162, 166], where the user specifies a query by singing or humming a part of a

melody. Similarly, the user may specify a query by playing a musical phrase of a piece of

music on an instrument [3, 120]. In a related retrieval scenario, the task is to identify a short

symbolic query (e. g., taken from a musical score) in a music recording [155, 65, 148, 184, 11].

Conventional retrieval systems approach this task by first extracting the F0-trajectory from the

recording, quantizing the extracted trajectory to musical pitches and finally mapping it to a TF

representation to perform the matching (see [166]).

Many works in the MIR literature are concerned with extracting the predominant melody in

polyphonic music recordings—a widely used example is Melodia [164]. More recent studies

adapted techniques to work better with different musical styles, e. g., in [30], a combination of

estimation methods is used to improve the performance on symphonic music. In [96], the authors

use a source-filter model to better incorporate timbral information from the predominant melody

source. A data-driven approach is described in [21], where a trained classifier is used to select

the output for the predominant melody instead of using heuristics.

5.3 DNN-Based Solo Voice Enhancement

Our data-driven solo voice enhancement approach is inspired by the procedure proposed in [188],

where the authors use a DNN for source separation. We will now explain how we adapt this

DNN architecture to our jazz music scenario.
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Figure 5.2: Input TF representation obtained from a music recording (left) and target TF
obtained from the related WJD’s solo transcription (right).

5.3.1 Deep Neural Network

Our DNN architecture closely follows [188], where the authors describe a DNN architecture and

training protocol for source separation of monophonic instrument melodies from polyphonic

mixtures. In principle, the network is similar to Stacked Denoising Autoencoders (SDA) [193],

i. e., it consists of a sequence of conventional neural network layers that map input vectors to

target output vectors by multiplying with a weight matrix, adding a bias term and applying

a non-linearity (rectified linear units). In the setting described by the authors of the original

work, the initial DNN consists of 3591 input units, a hidden layer, and 513 output units. The

input vectors stem from a concatenation of 7 neighboring frames (513 dimensions each) obtained

from a Short Time Fourier Transform (STFT) [131]. The target output vector is a magnitude

spectrogram frame (513 dimensions) of the desired ground-truth. The training procedure uses

the mean squared error between input and output to adjust the internal weights and biases via

Stochastic Gradient Descent (SGD) until 600 epochs of training are reached. Afterwards, the

next layer is stacked onto the first one and the output of the first is interpreted as an input

vector. This way, the network is gradually built up and trained to a depth of five hidden layers.

The originality of the approach in [188] lies in the least-squares initialization of the weights and

biases of each layer prior to the SGD training [60].

In our approach, we do not try to map mixture spectra to solo instrument spectra, but rather to

activation vectors for musical pitches. Our input vectors stem from an STFT (frame size = 4096

samples, hop size = 2048 samples) provided by the librosa Python package [123]. We then map

the spectral coefficients to a logarithmically spaced frequency axis with 12 semitones per octave
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Training Set Validation Set Test Set

Duration (h) 5.575 (0.003) 2.389 (0.001) 0.885 (0.004)
Active Frames (%) 61.9 (0.2) 62.0 (0.3) 61.9 (1.8)
No. of Solos 269.1 (5.2) — 29.9 (5.2)
No. of Full Rec. 204.3 (3.8) — 22.7 (3.8)

Table 5.1: Mean duration and mean ratio of active frames aggregated over all folds (standard
deviation is enclosed by brackets).
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Figure 5.3: Training and validation loss during training epochs. For both losses, we show the
mean values and the 95 % confidence intervals. The red lines indicate when the next layer is
added to the DNN.

and 10 octaves in total which forms the TF representation for the music recordings [131]. The

TF representations for the solo transcriptions are directly obtained from the WJD. In these first

experiments, we want a simple DNN architecture and do not consider temporal context to keep

the number of DNN parameters low. Therefore, our initial DNN consists of 120 input units, one

hidden layer with 120 units, and 120 output units. Figure 5.2 shows the input TF representation

of the music recording and the corresponding target output TF representation from the WJD’s

solo transcription.

5.3.2 Training

To train our DNNs, we consider the solo sections of the tracks provided by the WJD, i. e., where

a solo transcription in a representation similar to a piano-roll is available. This selection leads to

a corpus of around 9.5 hours of annotated music recordings. To perform our experiments, we

sample 10 folds from these music recordings for training and testing using scikit-learn [146].

By using the record identifier provided by the WJD, we avoid using solos from the same record

simultaneously in the training and test sets. Furthermore, we randomly split 30 % of the training

set to be used as validation data during the training epochs. Table 5.1 lists the mean durations

and standard deviations for the different folds and the portion of the recordings that consists

of an actively playing soloist. The low standard deviations in the duration, as well as in the
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(a) (b)

Figure 5.4: Typical example for the polyphony reduction using our DNN for an excerpt from
Clifford Brown’s solo on Jordu. (a) Input TF representation. (b) Output TF representation
after processing with the DNN.

portion of active frames indicate that we created comparable folds. Note that a full recording can

contain more than one solo transcription which explains the higher number of solo transcriptions

compared to the number of full recordings. In order to reproduce the experiments, we offer the

calculated features for all folds, as well as the exact details of the network architecture, on our

accompanying website [6].

We start the training with our initial DNN with one hidden layer. We use SGD (momentum = 0.9,

batch size = 100) with mean squared error as our loss function. After multiples of 600 epochs, we

add the next layer with 120 units to the network until a depth of five hidden layers is reached. All

the DNNs have been trained using the Python package keras [40]. The resulting mean training

and mean validation loss considering all 10 folds are shown in Figure 5.3. After multiples of

600 epochs, we see that the loss improves as we introduce the next hidden layer to the network.

With more added layers, we see that the validation loss diverges from the training loss as a sign

that we are slowly getting into overfitting and can thus end the training.

5.3.3 Qualitative Evaluation

To get an intuition about the output results of the network, we process short passages from solo

excerpts with the trained DNNs. Figure 5.4a shows the TF representation of an excerpt from a

trumpet solo. Processing this with the DNN yields the output TF representation as shown in

Figure 5.4b. Note that the magnitudes of the TF representations are logarithmically compressed
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Figure 5.5: Mean reciprocal rank (MRR) for all three methods performed on all folds and with
varying the query length. For all methods, we show the 95 % confidence intervals.

for visualization purposes. In the output, we can notice a clear attenuation of frequencies below

110 Hz and above 1760 Hz. An explanation for this phenomenon is that no pitch activations

in those frequency bands are apparent in our training data. Thus, the DNN quickly learns to

attenuate these frequency areas since they do not contribute to the target pitch activations at

the output. In the region between these two frequencies, a clear enhancement of the solo voice

can be seen, together with some additional noise. As seen in the input TF representation, the

fundamental frequency (around 500 Hz) contains less energy than the first harmonic (around 1000

Hz), which is typical for the trumpet. However, the DNN correctly identifies the fundamental

frequency. Further examples, as well as sonifications of the DNN’s output, can be found at the

accompanying website [6].

5.4 Retrieval Application

In this section, we first summarize our retrieval procedure and then describe our experiments.

We intentionally constrain the retrieval problem to a very controlled scenario where we know

that the monophonic queries correspond almost perfectly to the soloist’s melody in the recording.

We can rely on this assumption, since we use the manual transcriptions of the soloist as provided

in the WJD.

5.4.1 Retrieval Task and Evaluation Measure

In the this section, we formalize our retrieval task following [131]. Let Q be a collection of jazz

solo transcriptions, where each element Q ∈ Q is regarded as a query. Furthermore, let D be a

set of music recordings, which we regard as a database collection consisting of documents D ∈ D.

Given a query Q ∈ Q, the retrieval task is to identify the semantically corresponding documents

D ∈ D. In our experiments, we use a standard matching approach which is based on chroma
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Figure 5.6: Typical example for the effect of both solo voice enhancement techniques. (a)
Log-frequency magnitude spectrogram of a short jazz excerpt from our data. There is a clearly
predominant solo melody, but also strong components from the accompaniment, such as bass and
drums. (b) The same excerpt after running through a trained DNN as described in Section 5.3.
We can see strongly attenuated influence of the accompaniment. (c) The same excerpt after
extracting the predominant melody using the salience-based approach [164]. We can see that the
trajectory of the solo melody has been tracked with only very few spurious frequencies.

features and a variant of Subsequence Dynamic Time Warping (SDTW). In particular, we use a

chroma variant called CENS features with a smoothing of 9 time frames and a downsampling

factor of 2 [134]. Comparing a query Q ∈ Q with each of the documents D ∈ D using SDTW

yields a distance value for each pair (Q,D). We then rank the documents according to the these

distance values of the documents D ∈ D, where (due to the design of our datasets) one of these

documents is considered relevant. In the following, we use the mean reciprocal rank (MRR) of

the relevant document D ∈ D as our main evaluation measure. For the details of this procedure,

we refer to the literature, e. g., [131, Chapter 7.2.2].

5.4.2 Experiments

We now report our retrieval experiments which follow the retrieval pipeline illustrated in Fig-

ure 5.1. In general, for our retrieval experiments, the queries are TF representations of the

solo transcriptions from the WJD and the database elements are the TF representations of the

corresponding full recordings containing the solos. We perform the retrieval for all 10 training

folds separately. As listed in Table 5.1, the retrieval task consists in average for each fold of

30 solo transcriptions as queries to 23 music recordings in the database. Assuming we have a

system that retrieves the relevant document randomly following a uniform distribution, for 30

queries and 23 database elements this would lead to a mean reciprocal rank of 0.13. This value

serves as a lower bound of the expected performance of more intelligent retrieval systems. To

further study the retrieval robustness, we consider query lengths starting from using the first 25

s of the solo transcription and then successively going down to 3 s.
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In our baseline approach, we reduce the TF representations of the query and database documents

(without using the DNN) to chroma sequences and apply the retrieval technique introduced

earlier. The results of the baseline approach in terms of MRR for different query lengths are

shown in Figure 5.5, indicated by the blue line. For a query length of 25 s, the baseline approach

yields an MRR of 0.94. Reducing the query length to 5 s leads to a significant drop of the MRR

down to 0.63. Now we consider our proposed DNN-based solo voice enhancement approach. The

queries stay the same as in the baseline approach, but the TF representations of the database

recordings are processed with our DNN before we reduce them to chroma sequences. For a query

length of 25 s, this yields an MRR of 0.98; for a query length of 5 s, the MRR only slightly

decreases to 0.86 which is much less than in the baseline approach. A reason for this is that

the queries lose their specificity the shorter they become. This leads to wrong retrieval results

especially when using the unprocessed recordings as in the baseline approach. The DNN-based

approach compensates this by enhancing the solo voice and therefore makes it easier for the

retrieval technique to identify the relevant recording.

Lastly, we consider a salience-based approach described in [164] for processing the music record-

ing’s TF representation. In short, this method extracts the predominant melody’s F0-trajectory

from the full recording, which is then quantized and mapped to a TF representation. The

conceptional difference to our DNN-based approach is illustrated in Figure 5.6. For a query

length of 25 s, this method yields a slightly lower MRR than the DNN-based approach of 0.96.

Reducing the query to a length of 5 s, we achieve an MRR of 0.84. All three methods perform

well when considering query lengths of more than 20 s. When the query length is shortened, all

methods show a decrease in performance, whereas the DNN-based and salience-based methods

significantly outperform the baseline approach.

5.5 Towards Non-Salient Instruments: Jazz Walking Bass Tran-

scription

So far, we wanted to enhance the solo instrument’s voice, which is typically the most salient voice

in a jazz piece. Of course, there are additional voices such as such as the bass or the piano which

are less salient yet play an important role for giving harmonic context. In this section, we report

on experiments where we adapted our DNN-based approach to learn a salience representation

for the bass instead for the solo voice. Our procedure is illustrated by Figure 5.7a: Given a jazz

recording as input to a DNN, the objective is to learn the pitches played by the bass player. We

evaluate the performance of the learned models in a transcription scenario where we assume that

a (monophonic) walking bass line is present in the music, i. e., a bass pitch is present at each

beat position. The estimated walking bass line is represented as a sequence of beat-wise pitch

values and is estimated in a two-step way: we first extract the bass salience representation and
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Figure 5.7: Visualization of the proposed system. (a) The labelled dataset D1 is used for training
the DNN to derive model M1. (b) M1 is used to create labels for the unlabelled music recordings
in dataset D2. (c) D1 and D2 are used as a combined training set to derive the DNN model M2.

then aggregate the frames by using the beat annotations obtained from the WJD to obtain a

beat-wise bass salience representation. Extracting the walking bass line is done by picking the

highest value for the current beat estimate.

5.5.1 Input Features and Targets

In our approach, we resample each audio signal to a sampling rate of 22.05 kHz and compute

the constant-Q magnitude spectrogram using the librosa python library [124] with a hopsize of

1024 (46.4 ms) and a frequency resolution of 12 bins per octave as input features. We consider

the pitch range of a double bass ranging from MIDI pitch 28 and 67 (f0 values from 41.2 Hz to

392 Hz). Pitch annotations are converted to binary pitch saliency vectors, which serve as target

representation for multi-label classification. Both the input features and target values have the

same dimensionality of 40.

In order to enlarge the datasets D1 and D2, we perform data augmentation and created two

additional versions of each audio recording by applying pitch shifting1 one semitone upwards and

downwards, respectively. As a side effect, this procedure balances the overall pitch distribution in

the training set. The enlarged datasets are denoted as D+
1 (duration = 1.3 h) and D+

2 (duration

= 21.49 h).

1For pitch shifting we used the sox audio library http://sox.sourceforge.net/
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Alg. Frame-wise Beat-wise Sparseness
A APC A APC [88]

SG 0.28 (0.14) 0.39 (0.15) 0.68 (0.22) 0.75 (0.21) -
RK 0.12 (0.13) 0.18 (0.14) 0.60 (0.27) 0.64 (0.26) -
D 0.37 (0.20) 0.41 (0.19) 0.72 (0.16) 0.75 (0.15) -

M1 0.31 (0.09) 0.43 (0.10) 0.71 (0.17) 0.78 (0.14) 0.684 (0.035)
M+

1 0.57 (0.13) 0.70 (0.11) 0.83 (0.13) 0.89 (0.11) 0.761 (0.018)

M0,+
2 0.54 (0.12) 0.68 (0.11) 0.81 (0.14) 0.88 (0.12) 0.954 (0.010)

M1,+
2 0.54 (0.13) 0.70 (0.11) 0.81 (0.14) 0.89 (0.11) 0.935 (0.015)

M2,+
2 0.55 (0.12) 0.71 (0.11) 0.82 (0.14) 0.89 (0.12) 0.922 (0.019)

M3,+
2 0.56 (0.12) 0.70 (0.11) 0.82 (0.14) 0.88 (0.12) 0.862 (0.030)

Table 5.2: Mean pitch detection accuracy values A, chroma accuracy APC, and mean frame-wise
sparseness values, averaged over all test files (standard deviation values given in brackets). Both
accuracy measures are computed frame-wise and beat-wise. Highest accuracy values A and
sparseness values are denoted in bold print.

5.5.2 Training

The training was done in a similar fashion as described in Section 5.3.2. For the optimization, we

used the ADADELTA algorithm [199], a mini-batch size of 500 (samples per gradient update),

500 epochs (gradient updates) for the training of each layer, and the mean squared error as the

loss function.

Our experiments showed that a network with 4 layers, 5 context frames, 25% dropout, and no

weight regularization showed the best performance on the dataset D+
1 . The optimal number of

layers is close to the 5 layers used for melody pitch salience estimation. The incorporation of

temporal context (frame stacking) seems beneficial for our application scenario. One possible

reason could be that most bass notes in the walking bass style are relatively long (quarter notes)

and have a stable pitch contour.

5.5.3 Evaluation

For our evaluation, a separate dataset D3 (duration = 0.12 h) is used as test set. We obtain

bass salience predictions from the six models trained on different combinations of datasets. The

state-of-the-art bass transcription algorithms by Ryynänen & Klapuri (RK) [163] and Dittmar

et al. (D) [48] output a list of note events (score). The algorithm from Salamon & Gomez

(SG) [166] outputs a frame-wise f0 contour of the bass line.2 The quantitative results in terms

of frame-wise transcription accuracy are shown in Table 5.2. Summarizing the results reveals

that using data augmentation was beneficial in our scenario. Transcription accuracy values are

consistently higher around 5–10% when using the DNN-based methods when disregarding octave

2It must be noted that the algorithm SG is limited to a two-octave pitch range between the MIDI pitch values
21 and 45(f0 values between 27.5–110 Hz).
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Figure 5.8: Excerpts from bass pitch salience representations for excerpt from 0:04 to 0:09 of
Chet Baker’s Solo on Let’s Get Lost. Pitch salience matrices for deep learning methods are
squared for better visibility. The MIDI pitch is shown on the vertical axis.

errors. However, one important note is that the state-of-the-art algorithms are not at all tailored

towards jazz music while the proposed models are trained on music recordings with similar music

style as the test data. For a more detailed evaluation, we refer to [1].

Figure 5.8 shows the predicted bass salience representations from all compared algorithms for the

bass line excerpt from 0:04 to 0:09 of Chet Baker’s Solo on Let’s Get Lost. With respect to the

proposed methods, adding additional training data using the semi-supervised training procedure

does not significantly improve the accuracy values for the given transcription task. However, we

found that the predictions obtained from all variants of model M2, which incorporate additional

training data are sparser than the predictions obtained from the initial model M1. We interpret

this as an indicator that these models are more confident in predicting the pitch salience of

monophonic bass lines and show less confusion to other pitches. While this is not directly visible

in the evaluation within the given transcription task, we belief that it has potential to improve

source separation algorithms.
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5.6 Conclusion

In this chapter, we described a data-driven approach for solo voice enhancement by adapting

a DNN-based method originally used for source separation. As a case study, we used this

enhancement strategy to improve the performance of a cross-modal retrieval scenario and

compared it to a baseline and a conventional method for predominant melody estimation. From

the experiments we conclude that in the case of jazz recordings, solo voice enhancement improves

the retrieval results. Furthermore, the DNN-based and salience-based approaches perform on

par in this scenario of jazz music and can be seen as two alternative approaches. In a related

experiments, we used a similar network architecture and training procedure to estimate a bass

salience representation. In this scenario, only few training data is available which made the use

of data augmentation techniques such as pitch shifting important. In future work, we would

like to investigate if we can further improve the results by enhancing the current data-driven

approaches, e. g., by incorporating more temporal context through recurrent architectures and

testing different unsupervised training methods.
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Chapter 6

Enriching YouTube Videos with Jazz

Music Annotations

In this chapter, we present an approach to enrich publicly available videos with musical annota-

tions. We hereby closely follow our original contributions presented in [15, 5].

Web services allow permanent access to music from all over the world. Especially in the case

of web services with user-supplied content, e. g., YouTubeTM, the available metadata is often

incomplete or erroneous. On the other hand, a vast amount of high-quality and musically relevant

metadata has been annotated in research areas such as Music Information Retrieval (MIR).

Although they have great potential, these musical annotations are ofter inaccessible to users

outside the academic world. With our contribution, we want to bridge this gap by enriching

publicly available multimedia content with musical annotations available in research corpora,

while maintaining easy access to the underlying data. Our web-based tools offer researchers and

music lovers novel possibilities to interact with and navigate through the content. In this chapter,

we consider a research corpus called the Weimar Jazz Database (WJD) as an illustrating example

scenario. The WJD contains various annotations related to famous jazz solos. First, we establish

a link between the WJD annotations and corresponding YouTube videos employing existing

retrieval techniques. With these techniques, we were able to identify 988 corresponding YouTube

videos for 329 solos out of 456 solos contained in the WJD. We then embed the retrieved videos in

a recently developed web-based platform and enrich the videos with solo transcriptions that are

part of the WJD. Furthermore, we integrate publicly available data resources from the Semantic

Web in order to extend the presented information, for example, with a detailed discography

or artists-related information. Our contribution illustrates the potential of modern web-based

technologies for the digital humanities, and novel ways for improving access and interaction with

digitized multimedia content.
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< > http://mir.audiolabs.uni-erlangen.de/jazztube
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Figure 6.1: Illustration of the two-stage retrieval scenario applied to retrieve videos from YouTube.
(a) Overview of the various annotations for Clifford Brown’s solo Jordu contained in the Weimar
Jazz Database. (b) First retrieval stage: Text-based retrieval on YouTube resulting in a list of
candidates. (c) Second retrieval stage: Content-based retrieval using the solo recording from
the WJD as query. (d) Identified video embedded in a web-based demonstrator and enriched
with the annotations obtained from the WJD. Figure (d) has been created by the authors and,
therefore, no permission is required for its use in this manuscript.

6.1 Introduction

Online video platforms, such as YouTube, make billions of videos available to users from all

over the world. Many of these videos contain recordings of music performances. Often, these

performances are tagged with basic metadata—mainly the artist and the title of the song.

However, since this metadata is not curated, it might be incomplete or incorrect. The lack of

reliable metadata makes it hard to identify particular recordings, especially for music genres

where many renditions of the same musical work exist (e. g., symphonies in Western classical

music, ragas in Indian music, or standards in jazz music). Imagine a jazz student who is practicing

a jazz solo played by a famous musician and is now interested in the original recording. In the

case that the student searches for a musician whose name is not mentioned in the metadata (e. g.,

because the musician was “only” a sideman in the band), a textual search may not be successful

or may result in too many irrelevant results. Assuming that the student has already a partial or

even a complete transcription of the solo available, content-based retrieval techniques could help

to resolve this problem. Here, content-based means that, in the comparison of music data, the

system makes use of the raw music data itself (e. g., from the music recording or the YouTube

video), rather than relying on manually generated keywords referring to the artists’ names, the

song’s title or lyrics [130].
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6.1 Introduction

Jazz musicians, musicologists, and publishers have made many jazz solo transcriptions publicly

available during the last decades, e. g., Hal Leonard’s Omnibook series.1 One comprehensive

corpus of solo transcriptions is the Weimar Jazz Database (WJD), which consists of 456 (as of

May 2017) transcriptions of instrumental solos in jazz recordings performed by a wide range

of renowned musicians [147]. The solos have been manually transcribed by musicology and

jazz students. In addition, the database offers various music-related annotations such as chord

sequences or beat positions. We believe that these annotations are a great resource that could

help musicians and other researchers in gaining a deeper understanding of jazz music. However,

these annotations and the underlying audio material are not directly accessible, mainly for two

reasons. First, the audio files originate from commercial music recordings which are protected by

copyright and ancillary copyright laws. Therefore, they cannot be made publicly available by

scientific institutions. This restricts the usefulness of the dataset for scientific research, where

both the annotations and the corresponding audio material are required. Second, the annotations

are encoded in a database format which is not easily accessible for users without technical skills.

Both problems apply to many scientific datasets which offer musical annotations for commercial

music recordings. Simply switching to music recordings that are released under public domain

licenses is not an option for research questions which rely on specific music recordings. In

our approach, we try to bypass some of these copyright restrictions by using music recordings

that are publicly available via YouTube. However, there is no doubt that both musicians and

composers should be gratified financially for the music they create according to national and

international copyright and ancillary copyright laws. YouTube seems to guarantee this financial

entitlement through agreements with national copyright collecting societies. In contrast, for

scientific institutions offering music databases it is very difficult or impossible to handle these

legal claims. As a case study, we focus on the recordings which have corresponding annotations

in the WJD.

As the main contribution of this work, we introduce various retrieval methods based on metadata

and content-based descriptors and show how these techniques can be applied for identifying and

enriching YouTube videos. In the following, we sketch a typical two-stage retrieval scenario which

is then described in more detail in the subsequent sections (Figure 6.1 provides an overview). In

this example, we are interested in the song Jordu, recorded by Clifford Brown in 1954 (Figure 6.1a).

In the first step, we use the title and the name of the soloist as provided by the WJD to perform

a metadata-based search on YouTube (Figure 6.1b). This search results in a list of candidates.

Besides relevant music recordings, this list may also contain other recordings by the same artist

or cover versions by other artists. Using the recording associated to the WJD’s annotations, we

apply an audio-based retrieval approach to identify the relevant music recordings in this list of

candidates (Figure 6.1c). The result of this matching procedure is a list of relevant documents

that can be used to link the WJD’s annotations to the YouTube videos. The retrieved video is

1https://www.halleonard.com/search/search.action?seriesfeature=OMNIBK
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then embedded in a web-based application (Figure 6.1d). Additionally, we use the annotations

provided by the WJD to further enrich the video, e. g., by offering new navigation possibilities

based on the song structure or transcriptions of the song’s solo. As a result, the user is able to

follow the soloist’s improvisation in a piano-roll-like representation. For intuition and hands-on

experience with this concept, our web-based application can be accessed under the following

address:

http://mir.audiolabs.uni-erlangen.de/jazztube

The remainder of this chapter is structured as follows. We start by giving a brief overview of the

literature and related projects (Section 6.2). Then, we introduce the different data resources

used in this study (Section 6.3). Subsequently, we describe the various retrieval procedures which

are used to link the WJD to the YouTube videos (Section 6.4). Finally, we present a web-based

service which integrates the introduced data resources in a unifying user interface (Section 6.5).

6.2 Related Work

Similar web-based services which aim to enhance the listening experience have been proposed in

the past. Songle,2 for instance, lets users explore music from different perspectives [75]. In this

web-based service, computational approaches are used to annotate music recordings (including

beats, melodic lines, or chords). Afterwards, these generated annotations are presented in a

web-based interface. Since the automatically generated annotations may contain errors, the users

can correct them or add new ones. The annotations contained in Songle can then be used in

third-party applications or research projects (e. g., for singing-voice analysis). Another service

called Songrium,3 allows users to add lyrics to publicly available videos (e. g., obtained from

YouTube). In addition, the lyrics can be visualized and played back along with the linked video

similar to karaoke applications. For an overview of other systems by Goto and colleagues, we

refer to the literature, see [74, 73].

Another project which aims at enhancing the listening experience, especially for classical music, is

called PHENICX (Performances as Highly Enriched aNd Interactive Concert eXperiences) [115,

69, 125, 116]. As one main functionality, suitable visualizations are generated in real-time and

displayed during the live performance of an orchestra. Such visualizations may be a rendition of

a musical score (score-following applications) or an animation controlled by the baton movements

of the orchestra’s conductor. Furthermore, as in our scenario, the project offers a web-based

service, which allows the playback of enriched videos.4 In the research project Freischütz Digital,

2http://songle.jp
3http://songrium.jp
4http://phenicx.prototype.videodock.com
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6.2 Related Work

5 user interfaces for dealing with critical editions in an opera scenario were developed [161, 151].

In this scenario, an essential step is to link the different sheet music editions with the various

existing music recordings. These alignments are then used in special user interfaces which may

support musicologists in their work on critical editions.

Besides publicly available music recordings or videos, the internet offers additional information

(metadata or textual annotations) for music recordings. Many services offer metadata in a

structured way, often following standardized data formats as defined in the Semantic Web [19].

The Semantic Web contains standardized schemas, called ontologies, for exchanging different

kinds of data. A way to exchange musical annotations is defined in the Music Ontology [157]. One

of the most frequently used services in the Semantic Web is DBpedia6 which offers information

from Wikipedia in a structured data format. Popular services for music metadata in general

are MusicBrainz 7 or Discogs.8 In particular for jazz music, the JDISC 9 project aims to provide

complete discographies for a number of selected artists. Another related project is called Linked

Jazz,10 which offers relationships between jazz musicians in a structured way [143]. Beside sharing

metadata, researchers have used YouTube as a way of specifying datasets which were used in

their experiments [171]. In particular for audio applications, Google released AudioSet, a dataset

consisting of over two million 10-second sound clips obtained from YouTube which have then

been labeled by human annotators [70].

This work follows similar concepts as used in the SyncPlayer [108, 44, 186]. The SyncPlayer

offers various ways of interacting and navigating with a large, multi-modal corpus of music

recordings, sheet music, and lyrics. Furthermore, users are able to search within this corpus by

specifying a short melodic phrase or an excerpt from the lyrics. The results are then presented in

an interactive graphical user interface which allows auditioning the results. In previous works, we

studied the use of interfaces for two different music scenarios. In [12], a web-based user interface

motivated by applications in jazz piano education is presented. In particular, a video recording,

a piano-roll representation and additional annotations are incorporated in a unifying interface

which allows the user to simultaneously play back the different media objects. A related approach

focusses on the opera Die Walküre (The Valkyrie) from Richard Wagner’s cycle Der Ring des

Nibelungen (The Ring of the Nibelung). The goal of the interface is to supply intuitive functions

that allow a user to easily access and explore all available data (including different recordings,

videos, lyrics, sheet music) associated to a large-scale work such as an opera.

5http://www.freischuetz-digital.de
6http://www.dbpedia.org
7https://www.musicbrainz.org
8https://www.discogs.com
9http://jdisc.columbia.edu

10https://www.linkedjazz.org
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Abbr. Instrument #Solos

cl Clarinet 15
bcl Bass clarinet 2

ss Soprano saxophone 23
as Alto saxophone 80
ts Tenor saxophone 157

ts-c Tenor saxophone in C 1
bs Baritone saxophone 11

tp Trumpet 102
cor Cornet 15
tb Trombone 26

g Guitar 6
p Piano 6

vib Vibraphone 12

13
∑

456

Table 6.1: Solo instruments occurring in the WJD. The first column introduces an abbreviation,
whereas the last column indicates the number of solos of the respective instrument.

6.3 Data Resources

In this chapter, we consider jazz-related data of different modality stemming from different

resources. We now introduce the Weimar Jazz Database (WJD), the relevant jazz recordings,

the streaming platform YouTube from which we obtain videos, and the used web resources for

additional metadata.

6.3.1 Weimar Jazz Database (WJD)

The WJD is part of the Jazzomat Research Project,11 which aims at a better understanding of

creative processes in improvisations using computational methods [147]. The WJD comprises

456 (as of July 2017) high-quality solo transcriptions (similar to a piano-roll representation),

extracted from 343 tracks taken from 197 different records. The solos are performed by a wide

range of renowned jazz musicians in the period from 1925 to 2009 (e. g., Louis Armstrong, Don

Byas, or Chris Potter). All solos were manually annotated by musicology and jazz students at

the University of Music Franz Liszt Weimar using the SonicVisualiser [34]. The annotators had

different musical backgrounds but a general familiarity with jazz music, mostly through listening

and playing. The produced transcriptions were then inspected with an automated verification

procedure which primarily searched for syntactical errors and suspicious annotations, such as

beat outliers. In a final step, the transcription were cross-checked by an experienced supervisor

11http://jazzomat.hfm-weimar.de
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6.3 Data Resources

and added to the database. Table 6.1 lists the number of solo transcriptions grouped by the

13 different occurring solo instruments. As one might expect for jazz music, the database is

biased towards tenor saxophone and trumpet solos, which represent about 56% of the currently

available solo transcriptions.

Figure 6.2a shows the distribution of the solos with respect to their durations and recording

years. The solos have a minimum duration of 19 s (Steve Coleman’s second solo on Cross-Fade),

a maximum duration of 818 s (John Coltrane’s solo on Impressions), and an average duration

of 107 s. Similarly, Figure 6.2b indicates the distribution of the whole tracks (which usually

contain more than a single solo part), with a minimum duration of 128 s, a maximum duration

of 1620 s, and an average duration of 354 s. From all 343 tracks, there are 247 tracks with one

annotated solo part, 80 tracks with two, 15 with three, and a single track with four annotated

solo parts. Summing over the number of annotated note events in all solo transcriptions results

in over 200 000 elements.12

Figure 6.3 displays the beginning of Clifford Brown’s solo on Jordu as an example for the data

contained in the WJD. Figure 6.3a shows a time–frequency representation (see Section 6.3.2 for

details) of this excerpt superimposed by the available solo transcriptions (each note is represented

by a red rectangle) and measure positions (represented as blue vertical lines). Figure 6.3b shows

a sheet music representation derived from the solo annotations. Note that deriving sheet music

from the transcriptions requires algorithms which are able to quantize the onsets and durations

of the annotated note events into musically meaningful notes, see [67]. 13

6.3.2 Jazz Recordings

A typical jazz recording consists of a soloist who is accompanied by a rhythm section (e. g.,

double bass, piano, and drums). From an engineering perspective, such a recording is a sequence

of amplitude values sampled from a microphone signal (or a mixture of multiple signals). By

applying digital signal processing methods, one can analyze and manipulate such signals. A

common way to analyze music signals is to transform them into a time–frequency representation,

e. g., a spectrogram. For example in Figure 6.2a, we show an excerpt of a spectrogram from

Clifford Brown’s solo on Jordu. There exist different approaches to obtain such a time–frequency

representation.14 In particular, we use a logarithmically-spaced frequency axis with a bandwidth

of a single semitone per frequency band (row in the spectrogram)—motivated by human’s

logarithmic perception of frequency and the equal-tempered scale underlying the music. In this

representation, one can locate note onsets and durations, as well as harmonic partials generated

12Additional statistics: http://mir.audiolabs.uni-erlangen.de/wjd_web/statistics/
13The sheet music representation was generated by using the LilyPond (http://www.lilypond.org/) export

which can be obtained from the WJD by using the MeloSpyGUI (http://jazzomat.hfm-weimar.de/download/
download.html#download-melospygui).

14For the example in Figure 6.2a, we use the semitone filterbank described in [130, 133].
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6. Enriching YouTube Videos with Jazz Music Annotations

(a) (b)

Miles Davis
Bitches Brew

John Coltrane
Impressions

Figure 6.2: (a) 456 solos and (b) 343 tracks considered in the WJD, represented according to their
duration and respective recording years. The dashed lines indicate the limits for the maximum
duration of the considered YouTube videos.
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Figure 6.3: Beginning s of Clifford Brown’s solo on Jordu. (a) Log-frequency spectrogram, where
rectangles (red) indicate the solo transcription and vertical lines (blue) the annotated measure
positions. (b) Sheet music representation of the transcribed solo.

by the sounding instruments. For an overview of computational approaches and music processing

in general, we refer to the literature, e. g., [131, 195, 100].
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6.3.3 Videos

There exist many different web services which offer users to publish videos. Among these services,

YouTube15 is without doubt the largest and most famous platform for video sharing. For our

scenario, we are particularly interested in YouTube videos that contain music—especially the

music that underlies the WJD. Some of the offered music videos are official releases by record

labels, but the majority are videos uploaded by private platform users. Especially the music

videos uploaded by the private users often contain only a static image (cover art) or a slideshow

while the audio track is a digitized version of the commercially available record. By embedding

YouTube videos in a web service, one relies on the availability of these videos. Due to user

deletions, copyright infringements, or legal constraints in some countries, videos may not be

available. However, YouTube has a lot of redundancy, i. e., the same music recording may be

available in more than one version.

6.3.4 Additional Metadata

In addition to the solo transcriptions, the WJD contains basic metadata for the music recordings

(e. g., artist and record name), as well as a special identifier for the MusicBrainz16 platform.

MusicBrainz is a community-driven platform, which collects music metadata and makes it publicly

available. With the identifier available in the WJD, one is able to request a comprehensive list

of available metadata from the MusicBrainz platform (e. g., participating musicians, producer’s

name, and so on). Furthermore, MusicBrainz can serve as a gateway to other web services

which offer different kinds of metadata or even other multimedia objects (e. g., pictures of the

artist). This “web of data” is often referred to as the Semantic Web [19]. By using the web

service DBpedia,17 we can furthermore obtain and integrate content published on Wikipedia

(e. g., bibliographic information about the artist).

6.4 Retrieval and Linking Strategies

In this section, we report on experiments where we systematically created links between the

annotations contained in the WJD and corresponding YouTube videos. The retrieval task is as

follows: Given a specific music recording or a solo annotation provided by the WJD as query,

identify the relevant videos in the pool of YouTube videos. Since the number of YouTube videos

is very large, we follow a two-step retrieval strategy which we describe in the following.

15http://www.youtube.com
16http://www.musicbrainz.org/
17http://wiki.dbpedia.org
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6. Enriching YouTube Videos with Jazz Music Annotations

6.4.1 Retrieval Scenario

We started by formalizing our retrieval task following [131]. Let D be the set of all documents

available on YouTube. A YouTube document D ∈ D consists of the video and the available

metadata. Let Q be a collection of documents available within the WJD. A WJD document

Q ∈ Q consists of a solo annotation, the underlying music excerpts, as well as metadata. In

our scenario, the document Q served as query, whereas D was the database to search in. Given

a query Q, the retrieval task was to identify the corresponding documents D. In our scenario,

we followed a two-step retrieval strategy. First, we performed a metadata-based retrieval using

the YouTube search engine. For a query Q, the result of the text-based retrieval is denoted as

DText
Q ⊂ D. In the second step, we performed content-based retrieval only based on DText

Q to

identify the relevant documents, denoted as DRel
Q ⊆ DText

Q .

6.4.2 Text-Based Retrieval

In the first step of our retrieval strategy, we extracted a subset of possible video candidates

from YouTube. These were retrieved by performing two text-based queries (per solo) using

the standard YouTube search engine (using YouTube’s default settings). The first text-based

query term consisted of the name of the soloist and the song title (e. g., John Coltrane Kind

of Blue). Since the soloist is not always the artist who released the record, we performed a

second text-based query which consisted of the artist’s name under which the record was released,

followed by the song title (in our example: Miles Davis Kind of Blue). From each retrieval

result, we took the top 20 candidates (or less, depending on the number of YouTube search

results). Furthermore, we only considered videos which are shorter or equal to 1000 s to avoid

videos where users uploaded, for instance, complete records to YouTube (rather than individual

songs).

In our experiments, using the first text-based query terms for all 456 solos considered in the

WJD led to a pool of 4114 video candidates. The second text-based query resulted in a pool of

4069. In a next step, we fused the two candidate pools together, where we removed duplicates by

using the video identifiers attached to every YouTube video. Our final candidate pool comprised

5199 video candidates—resulting in approximately 12 candidates per query (solo). Note that

DMeta
Q may still contain cover versions and other irrelevant documents. The following audio-based

retrieval step is intended to resolve this issue.

6.4.3 Audio-Based Retrieval

In a second step, we used the audio recordings from the WJD to refine the list of candidates

DMeta
Q obtained from the text-based retrieval. This task is also known as audio identification and
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can be approached in many different ways, see e. g., [36, 131, 2]. Our method is based on chroma

features and diagonal matching which is easily extendable to retrieval scenarios with different

query and database modalities (e. g., matching solo transcription against audio recordings or

matching audio excerpt against sheet music representations). Furthermore, since we performed

our retrieval only on the small subsets DMeta
Q , we do not consider efficiency issues here. In

particular, we used a chroma variant called CENS with a feature rate of 5 Hz [134, 133].18 We

compared a query Q with each of the documents D ∈ DMeta
Q by using diagonal matching. This

comparison yields a distance value δQ,D ∈ [0 : 1] for each pair (Q,D), where δQ,D = 0 refers to a

perfect match and δQ,D = 1.0 to a poor match. By sorting the documents D ∈ DMeta
Q by δQ,D in

an ascending order, one receives a ranked list. In this ranked list, the most similar documents

(w.r.t. to the used distance function) are listed on top. In the case of extracting the relevant

documents, one has to further process this ranked list. For instance, one may mark a document

as relevant if δQ,D is smaller than a threshold τ ∈ [0 : 1]. All relevant documents that fulfill this

condition are then collected in the subset DRel
Q ⊆ DMeta

Q .

Using this retrieval approach with a threshold τ = 0.1, we were able to identify 988 relevant

videos for 329 solos on YouTube (on average 3 relevant videos per solo, min = 1, max = 9). For

92 queries, we retrieved 1 relevant document, for 67 queries 2, for 60 queries 3, and for 110 queries

more than 3 documents. However, for 124 queries, we were not able to find any relevant videos.

We found different reasons for this from manually inspecting some candidate lists. One obvious

reason is that the metadata-based retrieval step did not return any relevant documents in DMeta
Q

(e. g., for the textual David Murray Ask me Now). Sometimes, only other versions of the same

song are available on YouTube, for instance, the textual query Art Pepper Anthropology yields

mainly results for the version of this song from the record Art Pepper + Eleven: Modern Jazz

Classics instead of the relevant version from the record The Intimate Art Pepper. Furthermore,

in many instances, we found that relevant documents were present in DMeta
Q , but not recognized

since the distance value δQ,D surpassed the chosen threshold τ = 0.1 by a small margin.

6.4.4 Solo-Based Retrieval

The previous experiments were based on the assumption that we have access to the music

recordings underlying the WJD annotations. However, in certain scenarios this might not be the

case, for instance, when only a score representation of the piece or the solo is available. In this

case, audio identification is no longer possible and one needs more general retrieval strategies. In

the following experiment, we simulate a retrieval scenario by using the WJD’s solo transcriptions

(see Figure 6.3a) as query and convert them to chroma features. This constitutes a challenging

retrieval task, where one needs to compare monophonic queries (the solo transcriptions) against

polyphonic audio mixtures (music recordings contained in the YouTube videos).

18All computations can be done by using the implementations provided by the Python library librosa [124].
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K 1 3 5 10 15 20

Top-K 0.85 0.97 0.99 1.00 1.00 1.00

Table 6.2: Top-K matching rate for the solo-based retrieval. The Top-K matching rate is
calculated by dividing the Top-K matches by the 329 retrieved solos from the audio-based
retrieval.

In a first experiment for this advanced retrieval task, we took the same list of candidates DMeta
Q

and parameters as used in Section 6.4.3 and only exchanged the audio-based queries against

solo-based queries. In order to evaluate the results, we took the results DRel
Q from the audio-based

retrieval as reference. The solo-based retrieval is considered as correct if among the top K

documents in the ranked list, there is at least one relevant document. The results for this Top-K

evaluation measure are shown in Table 6.2.

We retrieve for 85% of the queries a relevant document at rank 1 (Top-1). For 99% of the queries,

the first relevant document is within the Top-5 matches. The mean reciprocal rank for the first

matches for all queries is 0.91 (σ = 0.22) Although the solos and audio recordings vary in their

degree of polyphony, we reach respectable results. The main reason is that the solo transcriptions

are relatively long and perfectly aligned, leading to a high “discriminative power”. Furthermore,

the queries are very unique, since they stem from an improvisation. When the queries get shorter,

usually the discriminative power decreases rapidly, as they may represent more frequently used

patterns.

6.4.5 Perspectives

So far, our approach for retrieving videos from YouTube relies on either audio recordings or

very clean solo transcriptions taken as queries. This is exactly the situation we had in our WJD

scenario. In other scenarios, one may have to deal with imperfect or less specific queries. For

instance, a query might be a person humming the solo, which then requires an extra step for

extracting the fundamental frequency from the hummed melody (query-by-humming), see e. g.,

[162, 145, 166]. Furthermore, the query may have a different tuning, may be transposed to

another key, or played with rhythmic variations. A possible solution could be to use multiple

queries, e. g., transposing the query in all possible 12 keys and performing a separate retrieval for

each resulting version. Another way of handling some of these issues is to use different feature

representations, e. g., features that robust against temporal deformations, see [2, 181, 180].

In a related retrieval scenario, described in [11], audio recordings were retrieved from a database

containing Western classical music recordings by using monophonic queries with a duration of only

a few measures. Besides the discrepancy in the degree of polyphony between query and database

documents, tuning, key, and tempo deviations, which frequently occur in Western classical music
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performances, make this retrieval task very challenging. A common preprocessing step, which

targets the “polyphony gap” between query and database document, is to enhance the predominant

melody in audio recordings. In [166], the authors used a so-called salience representation in

a query-by-humming system which led to a substantial increase in performance [164]. In [13],

a data-driven approach is used to estimate a salience representation for jazz music recordings

which showed a similar performance as the aforementioned, salience-based method.

Another untapped resource for jazz music retrieval are the many publicly available solo transcrip-

tions. However, these transcriptions are typically not available in a machine-readable format. In

this case, one could use Optical Music Recognition (OMR) systems to convert sheet music images

to symbolic music representations. This conversion, however, may introduce severe errors, such as

missing notes, wrongly detected clefs, key signatures, or accidentals, see [18, 33, 66, 159, 158, 11].

A recently proposed approach for score following tries to circumvent the difficult OMR step

by directly working on the scanned images of the sheet music [50]. Two Convolutional Neural

Networks (CNN)—one applied to the sheet music, a second one to the audio recordings—are used

for feature extraction. In an extra layer, these features are then combined to retrieve temporal

relationships between the two modalities, for instance with a learned embedding space [153, 51].

Currently, new OMR approaches based on deep neural networks show promising results and may

lead to a significant increase in conversion quality [81].

6.5 Application

In this section, we present the functionalities of our web-based application, called JazzTube,

which allows users to easily access the WJD’s annotations, as well as the corresponding YouTube

videos, in different interactive ways. The application offers various ways to access the WJD.

First, tables of the compositions, soloists, and transcribed solos contained in the WJD are in

given in form of suitable tables. Furthermore, one can access the information on the record, the

track, and at the solo level.

6.5.1 Solo View

Figure 6.4 shows a screenshot of the core functionality of our interactive, web-based user interface.

In the top panel, some general information about the solo (Figure 6.4a) is shown. Many of

these entries are hyperlinks and lead to the artist’s overview page or the corresponding track.

Furthermore, several possibilities of exporting the solo transcription, either as comma-separated

values (CSV), or as sheet music, are offered. The conversion from the annotations to the sheet

music is obtained by using the algorithm described in [147]. Below this basic information, all

available YouTube videos are listed (Figure 6.4b). Having more than one match gives alternatives
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to the user. Note that YouTube videos may have different recording qualities or may disappear

from YouTube. After pressing the play button, the corresponding YouTube video is automatically

retrieved and embedded in the website (Figure 6.4c). Below the YouTube player, a piano-

roll representation of the solo transcription is presented running synchronously with the video

playback (Figure 6.4d). Finally at the bottom, additional statistics about the solo (e. g., pitch

histograms) are provided (Figure 6.4e).

6.5.2 Soloist View

Starting from an overview table of available soloists, the user can navigate to the soloist

view containing additional details about the artist. Here, one can also find the available solo

transcriptions for the given soloist. Furthermore, Semantic Web technologies are used to perform

a search query on DBpedia to retrieve further details. Usually the received response is very rich

in information. Currently, a short biography and a link to the corresponding Wikipedia entry for

further reading are included. In addition to the biographical data, further relationships to other

artists, obtained from the LinkedJazz project, are embedded.

6.5.3 Technical Details

Our web-based demonstrator is a typical client-server application. The client uses the Hypertext

Transfer Protocol (HTTP) to perform requests to the server (e. g., by entering an URL through

a web browser). These requests are then processed by the server and the response is displayed in

the user’s web browser. For setting the layout, we use the open-source framework Bootstrap19.

This framework allows for designing a website for different devices (e. g., laptops, tablets, or

smartphones). Interactions and animations within the client are realized with JavaScript.20 In

particular, a framework called D3 (Data-Driven Documents)21 for visualizing the piano-roll is

employed. For the server backend, the Python framework Flask is used.22

6.5.4 Possible Advancements for JazzTube

In the case of the Weimar Jazz Database, looking at the scrolling piano roll visualization of a jazz

improvisation while simultaneously listening to the recording could be both of high educational

value and a great pleasure. To relate sounding music to moving pitch contours, rhythms, changing

event densities, and recurring or contrasting motifs and patterns, which are easily recognizable

from a piano roll visualization, can enrich and deepen the understanding of the tonal, rhythmical,

19http://www.getbootstrap.com
20https://www.javascript.com
21https://www.d3js.org
22http://flask.pocoo.org
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and formal dimensions of the music in an inimitable way. Moreover, recognizing musical passages

visually immediately before listening to the sounds can contribute to the play with musical

expectancies (or “sweet anticipation”, [93]) which lie at the heart of the pleasures of listening to

music.

For the future, several extensions to the current form of JazzTube are desirable. The piano roll

representation could be extended with different layers of annotations, such as phrases, midlevel

units, chords, choruses, form part, or tone formation, which are already available in the WJD.

Coloring or annotating events with respect to different functions, e. g., roots of underlying chords,

passing tones, or melodic accents, would give an even deeper insight in the inner structure of

an improvisation. In the case of jazz, automated identification and annotation of patterns and

licks would provide options for analysis not easily achievable with traditional paper and pencil

tools. Furthermore, retrieving patterns or motifs from the database would be of great value, for

example, by selecting a few tones in a solo and finding and displaying all cross-references in the

corpus. Finally, adding options of score-following would be of great help, since music notation

is still the standard communication and representation tools of musicians and musicologists.

On a different footing, the vast educational implications could be further exploited by adding

specialized display options or specifically designed course materials and tutorials (e. g., on jazz

history) based on the contents and possibilities of JazzTube.

6.6 Conclusions

With JazzTube, we offer researchers and music lovers novel possibilities to interact with and

navigate through the content of the WJD. With JazzTube’s innovative approach to link scientific

music databases including metadata, transcriptions and further annotations to the corresponding

audio recordings that are publicly available via YouTube, copyright restrictions can be bypassed

in an elegant way. However, there is no doubt that both musicians and composers should be

gratified financially for the music they create according to national and international copyright

and ancillary copyright laws. YouTube seems to guarantee this financial entitlement through

agreements with national copyright and performance protection associations. In contrast, for

scientific institutions offering music databases it is very difficult or impossible to handle these

legal claims. Therefore, the approach of JazzTube could open up a way for music projects to

connect metadata and annotations with audio recordings that can not be freely provided on the

internet but can be used for searching for the corresponding audio recordings at YouTube. This

could be a way to easily link, e. g., the recording metadata provided within the JDISC23 project

with YouTube recordings. Furthermore, we envision that JazzTube is a source for inspiration

and fosters the necessary dialogue between musicologists and computer scientists.

23http://jdisc.columbia.edu
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< > http://mir.audiolabs.uni-erlangen.de/jazztube
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Figure 6.4: Screenshot of our web-based interface called JazzTube. (a) Metadata and export
functionalities. (b) List of linked YouTube videos. (c) Embedded YouTube video. (d) Piano-roll
representation of the solo transcription synchronized with the YouTube video. (e) Additional
statistics.
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Chapter 7

Opera as a Multimedia Scenario:

Wagner’s Valkyries Go Online

This chapter closely follows the results presented in [14].

Music—with its many representations—can be seen as a multimedia scenario: There are a

number of media objects (e. g., video recordings, lyrics, or sheet music) beside the actual music

recording, which describe the music in different ways. Through digitization efforts, many of

these media objects are now publicly available on the Internet. However, the media objects

are usually accessed individually, without using their musical relationships. Harnessing these

relationships could open up new ways of navigating and interacting with the music, or extending

existing media objects with additional metadata. In this chapter, we model these relationships

with a suitable database model by taking Richard Wagner’s opera Die Walküre as a case study.

Based on this model, we present a web-based demonstrator which combines the interconnections

between the media objects and allows users to access the data through a graphical user interface.

7.1 Introduction

Operas are an essential part of concert programs worldwide. They combine elements from

theater, singing, and orchestral music to form a complete artwork. Many famous composers

wrote operas such as Giuseppe Verdi, Giacomo Puccini, Georges Bizet, Wolfgang Amadeus

Mozart, or Richard Wagner. First and foremost, Wagner is well-known for his opera cycle

Der Ring des Nibelungen. This cycle consists of the four operas Das Rheingold, Die Walküre,

Siegfried, and Götterdämmerung. Depending on the performance, the total duration of all operas

combined is around 16 hours. The corresponding libretto (text of an opera) and the sheet music

fill hundreds of pages. Today, much of this multimedia data is available on the Internet; for
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ZZZZZZZZ

Samples

Li
ne

s

…
1218: als in frostig öder Fremde
1219: zuerst ich den Freund ersah.
1220: O süßeste Wonne!
1221: O seligstes Weib!
1222: O laß in Nähe
1223: zu dir mich neigen,

…

Music Recording Video Recording Libretto

Sheet Music(d)

(a) (c)(b)

Figure 7.1: Overview of the different media objects in the context of an opera. (a) Music
recording. (b) Video recording. (c) Libretto. (d) Scanned sheet music. The red annotations
indicate the relationships of the individual media objects. Once these annotations exist, they
allow simultaneous navigation across the media objects.

instance, recordings of the ring cycle are publicly available and can be found on video platforms

such as YouTube. The sheet music, as well as the libretto, are distributed on platforms such as

the International Music Score Library Project (IMSLP).1 A central task is to unveil the existing

musical relationships between media objects with the help of computational approaches, and

make the results accessible for the user. Our vision comprises a user interface which allows access

to a particular video recording (e. g., on Youtube), which is then automatically aligned to the

available sheet music, enriched with the libretto, and linked to other available resources about

the musical work or the composer.

The main contributions in this chapter are the modeling of the opera as a multimedia scenario

and the enrichment with publicly available video recordings by using a web-based user interface.

Flawlessly implementing our design for all genres is a very challenging task which is not yet

solved. To keep the system’s complexity feasible, we focus in the following on the opera scenario,

which comprises media objects of many types, see Figure 7.1 for an example which is taken from

Wagner’s opera Die Walküre. All different media objects—audio and video recording, the opera’s

libretto, and the sheet music—describe the same opera from different perspectives. A trivial

linking of these media objects is impossible due to their different types.

The remainder of this chapter is structured as follows: In Section 7.2, we first present related

concepts and existing systems from the literature. In Section 7.3, we take the opera Die Walküre

1http://www.imslp.org
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7.2 Related Work

as an example to explain the available media objects and a way to link them. Based on this

linking concept, we introduce and discuss a relational database schema. In Section 7.4, we present

a prototypical web-based demonstrator which allows for a simultaneous access and navigation

within the linked media objects.

7.2 Related Work

Many research contributions deal with similar approaches for navigation across different media

objects. In the following, we present a number of central works from this research area. This

work is closely related to the concepts of the SyncPlayer [44]. In this system, the user can search

a music database by using various query types (e. g., a short melody or a line from the lyrics),

which are then processed by a server. The results from this search are presented and played back

in a graphical user interface. The possibility to interact and navigate within the sheet music

representation is especially useful for musicologists. Similar user interfaces were developed in the

project Freischütz Digital for dealing with critical editions in an opera scenario [161, 198]. In

this project, a core task is to link the existing music recordings with the different editions of the

musical score. Based on the established links, several user interfaces were developed to assist

musicologists in creating a critical edition.

Another project which aims at enhancing the listening experience, especially for classical music,

is called PHENICX (Performances as Highly Enriched aNd Interactive Concert eXperiences)

[115, 69]. As one main functionality, suitable visualizations are generated in real-time and

displayed during the live performance of an orchestra. Such visualizations may be a rendition of

a musical score (score-following applications) or an animation controlled by the baton movements

of the orchestra’s conductor.

Computational approaches for synchronizing music recordings with the corresponding sheet music

is an important task in Music Information Retrieval (MIR). Besides the music synchronization

task, there exist other tasks (e. g., content-based retrieval, music structure analysis, or audio source

separation). For an overview, we refer to the literature (e. g., [131, 195, 114, 129, 196, 100, 136]).

7.3 Case Study: Die Walküre by Richard Wagner

In this section, we take the opera Die Walküre by Richard Wagner as an example to explain

different media objects and discuss their interactions. Inspired by [126], we first describe the

media objects which play a role in our scenario. With the help of a relational database schema,

we present the properties of the media objects and their interconnections. Finally, based on this

database schema, we develop a web-based demonstrator which shows possibilities for flexible
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Media Object Media type Elements Divison of Time

Music recording Audio Sequence of audio samples Time axis (samples/seconds)
Video recording Video Sequence of images Time axis (frames/seconds)
Libretto Text Sequence of strings Lines
Sheet music Image Sequence of images Pages

Table 7.1: Overview of media objects in an opera scenario. In addition, the media type is given,
as well as the elements of the media objects and their division of time.

navigation and audiovisual representations for the various media objects that are related to the

musical work at hand.

7.3.1 Presenting the Media Objects

An opera consists of different media objects. In this chapter, we consider typical media objects

which are shown in Figure 7.1. These are either specific to a particular performance (e. g., music

and video recordings) or specific to a particular musical work (e. g., libretto and sheet music).

In our model, we assume that each media object is a sequence of elements which are naturally

ordered w.r.t. time (i. e., incrementing physical time corresponds to the next element in the

sequence). In Table 7.1, we present these media objects together with a description of their

elements and the respective division of time.

Music Recording: Microphones can be used to capture sound waves during musical perfor-

mances. In the case of digital music recordings, the amplitudes of these sound waves are sampled

periodically and saved as a sequence. These amplitude values are also known as samples. A

typical sampling rate for compact disc (CD) recordings is 44 100 samples per second. Navigation

within a music recording is done via a physical time axis (given in seconds).

Video Recording: Video recordings consist of a sequence of images, called frames. A common

frame rate is 30 frames per second. The navigation within video recordings is performed—similarly

to music recordings—using a physical time axis (given in seconds).

Libretto: The libretto is the spoken and sung text in an opera. In our scenario, the libretto

consists of a sequence of text lines which can be accessed through a line number.

Sheet Music: Sheet music is, in our scenario, a sequence of scanned sheet music pages. A single

page usually consists of 30 measures and can be accessed with its page number.

Bringing these different media objects together in a unified framework is a challenging multimedia

task. Besides the different media types, a central requirement for our demonstrator’s functionality

is to establish a link across the various time axes.
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1219 1220 1221 Measures

Samples

1219 1220 1221 Measures

Frames

1219 1220 1221 Measures

Lines
O süßeste Wonne! O seligstes Weib!

1198 1223 1446 Measures

Pages

(a) (b)

(c) (d)

Figure 7.2: The media objects are linked through region annotations on a reference axis (given
in measures). Music (a) and video recording (b) allow for a precise projection onto the reference
axis due to their fine temporal resolutions. The libretto (c) is projected line-wise and the scanned
sheet music (d) is projected page-wise onto the reference axis.

7.3.2 Linking the Multimedia Objects

The media objects consist of sequences of discrete elements (samples, frames, text lines, pages

of sheet music) which have a temporal relationship with each other. This relationship can be

modeled with an abstract reference axis. In contrast to the discrete time axis of the existing

elements, we consider a continuous time axis. Points in time t ∈ R on this axis are given in

musical measures. Measure beginnings are encoded with whole numbers N ⊆ R (e. g., t = 3

encodes the beginning of measure three). All positions within measures are encoded with decimals

(e. g., t = 3.5 references to the middle of the third measure). In practice, we round the positions

on the continuous reference axis to a fixed number of three digits. The beginning of measure 3 is

encoded as 3.000, the middle as 3.500 and the end of this measure as 3.999. Furthermore, we

assume that a temporal resolution on the measure level is sufficient for our later applications.

In the case that a measure position is requested at a finer level than the temporal resolution

(e. g., measure position 3.750), we use linear interpolation to calculate the corresponding time

positions.

Figure 7.2 gives a schematic overview of the media objects and their projections onto the reference
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axis in our opera scenario. In general, we map subsequences of elements to suitable regions on

the reference axis. Figure 7.2a illustrates this concept for a music recording. A subsequence of

audio samples is assigned to the measure region 1219.000–1219.999 on the reference axis. A big

advantage of the region mapping is that we can skip unnecessary elements within the media

objects (e. g., applause or silence at the beginning or end of a music recording). Figure 7.2b

shows the annotations of a video recording where subsequences of frames are mapped to musically

corresponding regions on the reference axis. The libretto in Figure 7.2c is mapped line-wise

onto the reference axis. In contrast to the music and video recordings, the libretto consists of

significantly fewer elements—a line in the libretto contains the text for several measures. In our

scenario, the scanned music has the coarsest temporal resolution (approx. 30 measure per page),

see Figure 7.2d.

This concept of projecting subsequences of discrete elements on a shared, continuous reference

axis allows us to handle different kinds of requests based on measure regions for all media objects.

These requests can be efficiently processed with a relational database schema, which we will

present in the following section.

7.3.3 Database Schema

A common starting point when designing a database schema is to outline the scenario which

should be covered by the database (the so-called miniworld [58]). In our miniworld, we want to

model the media objects in an opera scenario and their corresponding relationships. Typically,

operas are addressed by a work title and a composer (e. g., Die Walküre by Richard Wagner).

Many operas are subdivided into smaller parts, for instance Die Walküre is divided into three

acts. Opera performances are usually identified with a combination of year, place, and conductor

(e. g., 1992, Bayreuth, Daniel Barenboim). A performance has many media objects which can be

linked with a reference axis (given in measures).

Figure 7.3 shows one possible model for our miniworld as an entity-relationship diagram (ER-

diagram in Chen-Notation [58]). Our model starts with the description of a musical work by

defining the entity type WORK. For the sake of simplicity, we consider the acts of an opera as

separate works (similar to the movements of a symphony or dances in a suite). The act of an opera

is therefore an entity of the type WORK which is identified by the attribute WorkID. The WorkID

for the first act in the opera Die Walküre is encoded as WWV086B-1, whereas WWV stands for

Wagner-Werk-Verzeichnis (catalogue of Wagner’s works). In this catalogue, 86B-1 describes

the first act of the opera Die Walküre. In this scenario, we furthermore assume that additional

metadata can be obtained from an existing Metadata DB which offers structured data using

existing schemas. For instance, a well-known service which offers metadata for music recordings
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Figure 7.3: Entity-Relationship diagram of the conceptual database schema (notation follows [58]).

is the open music encyclopedia MusicBrainz2. Another resource for additional metadata is the

Semantic Web3 which offers special schemas for music such as the Music Ontology [157]. The

Music Ontology can be used to obtain structured data from web services, but at the same time

allows users to share their data with other services.

Our opera scenario consists of various interconnected media objects. We model these media

objects with the abstract entity type MEDIA OBJECT. Each media object constitutes a realization

of an abstract type: AUDIO, VIDEO, LIBRETTO, or SCORE. This allows for an easy extension of the

database schema with new media types. The attribute URI (Uniform Resource Identifier) is used

to link to the source data (e. g., a video file on a local hard drive or a website). Each entity

is usually connected to several entities of type ANNOTATION OBJECT. The composite attributes

Subsequence and Measure model the mapping of a media object to the reference axis. Start

and End are used to map a sequence of elements to a region on the reference axis; e. g., Figure 7.2a

maps the measure region {1219.000, 1219.999} to the region {3408.65, 3411.03} in the music

recording. Finally, we add a 1:N relationship between WORK and ANNOTATION OBJECT to stress

2https://www.musicbrainz.org
3https://www.w3.org/standards/semanticweb/
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the connection between works and their annotations.

7.3.4 Adding Musical Works

Adding new musical works requires a mixture of manually creating annotations and using

computational methods. The most time-consuming step lies in annotating the start positions of the

measures in the music recordings (e. g., by using the publicly available tool Sonic Visualiser [35]).

In the case of the opera Die Walküre, we only created the measure annotations of a single

reference recording. By using computational approaches for music synchronization we were able

to transfer these annotations to other performances [152]. All further work-specific media objects

such as libretto and sheet music were annotated manually and added to the database.

7.4 Web-based Demonstrator

We developed a web-based demonstrator based on the database schema. The demonstrator is

meant to present possibilities for interaction and navigation in opera recordings. The core idea

of the demonstrator is to use publicly available video recordings (e. g., from the online video

platform YouTube) and enrich them with additional information about the musical work. We

used the grid-based HTML framework Bootstrap4 to design the user interface. JavaScript5 is

used for the user interaction in the browser and Flask6 for the logic on the server side. In the

following, we further explain the functionalities of our demonstrator with different recordings

from the opera Die Walküre.

Figure 7.4 presents a screenshot of the demonstrator where each media object has a corresponding

element in the user interface. Figure 7.4a shows the available versions (YouTube videos) for

the opera’s first act. The accessible measure regions are highlighted in green: Barenboim and

Sawallisch are complete recordings of the first act (measures 0–1524), whereas, for instance,

Levine only offers a part of the first act (measures 1214–1524). The reference axis and the current

measure are shown above the versions. The selected version is indicated with a note icon at the

beginning of the version. The corresponding video recording is shown in Figure 7.4b. Figure 7.4c

highlights the current line in the libretto. For better readability, we also print the previous and

next text line. The sheet music is depicted page-wise, see Figure 7.4d.

Navigating within the opera is possible in various ways. The user can either pick a measure on

the reference axis, directly enter a measure in a text box, or jump to a measure in particular

version by clicking on the highlighted regions. Switching between versions allows a comparison

4http://www.getbootstrap.com
5https://www.javascript.com
6http://flask.pocoo.org
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a

c

b d

Figure 7.4: Screenshot of the web-based interface which consists of five main elements. (a)
Overview of the available music recordings. The available regions within the respective version
are color-coded. (b) Integration of the video recording from the online platform YouTube. (c)
Textual visualization of the previous, current, and subsequent libretto lines. (d) Scanned sheet
music with buttons for page-wise navigation.

of different performances on a measure level (e. g., compare Daniel Barenboim’ in Bayreuth in

1992 with Wolfgang Sawallisch’s interpretation in the Bayerische Staatsoper in 1989). In the

sheet music, a page-wise navigation is possible, as well as directly accessing a page.

The web-based demonstrator is available under the following address:

http://mir.audiolabs.uni-erlangen.de/2017-GI-DemoWalkuere

7.5 Conclusions and Future Work

In this chapter, we described a way to model an opera as a multimedia scenario to enrich publicly

available video recordings with additional information. The associated media objects were linked

with a reference axis. These connections were then described with a relational database schema.
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We presented a web-based demonstrator that uses this schema to allow simultaneous and easy

access across media objects as well as the comparison of different performances of the same opera.

Our demonstrator enables a number of possible future tasks. One important aspect is the

extension of further search functionalities. The text-based search in the libretto could be

extended with a content-based search in the music recording. For instance, a new navigation level

could be introduced on the basis of repetitive melodic, harmonic, or rhythmic patterns. Especially

in Wagner’s operas, leitmotifs play an important role. Leitmotifs are repeating characteristic

melodic lines which are, for instance, associated to a character (e. g., the Siegfried-Motif ) or an

object (e. g., the Schwert-Motif ). Through their regular appearance, the leitmotifs give a sort of

structure to these long operas and help the listener to understand the plot.

Another extension to our demonstrator is the integration of additional metadata from the

Semantic Web. For instance, services such as DBpedia7 offer Wikipedia entries (e. g., on the

musical work or the composer) as structured data. Besides the purely technical challenges, we

consider the demonstrator as a presentation for a wider audience. Many publicly funded research

projects (like ours) create data which hardly finds any usage besides reaching the promised

project goals. Our demonstrator allows all music lovers to easily access and interact with the

data.

7http://wiki.dbpedia.org
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Chapter 8

Summary and Future Work

In this thesis, we dealt with fundamental tasks in Music Information Retrieval (MIR): retrieving,

extracting, and accessing music-related data of various media types including audio, video, images,

and text. Considering several complex music scenarios, we presented different aspects of these

tasks which we now summarize.

In the first part, motivated by the book “A Dictionary of Musical Themes” [16], we introduced a

cross-modal retrieval scenario with different media types including music recordings, as well as

musical themes given in MIDI format and as images. Linking these media types through the

musical content they describe, turned out to be a challenging problem. Audio-based retrieval

(Chapter 2) requires flexible feature representations and robust retrieval techniques to cope with

tempo and key deviations and, especially, with differences in the degree of polyphony between

symbolic MIDI queries and music recordings. In the second retrieval scenario (Chapter 3), we

had to deal with extraction errors introduced by Optical Character Recognition (OCR) and

Optical Music Recognition (OMR) systems. Currently, new DNN-based OMR approaches are

developed which may lead to a significant increase in extraction quality [81]. An interesting

extension could be to adapt these systems to a given sheet music style—such as the one used in

the Barlow–Morgenstern book—through transfer learning or active learning.

In the second part, we focused on the extraction of predominant voices from music recordings.

We first analyzed the influence of annotator disagreement on the evaluation of computational

approaches for predominant melody estimation within a jazz music scenario (Chapter 4). We then

presented a data-driven approach for solo voice enhancement by adapting a DNN-based method

originally used for source separation (Chapter 5). As a case study, we used this enhancement

approach in a cross-modal retrieval scenario. Given a monophonic solo transcription as a query,

the task was to retrieve the corresponding jazz music recording. As another contribution,

we indicated the potential of DNN-based methods in a bass transcription scenario where the

instrument is no longer salient in the music. One general problem of DNN-based methods
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is that they require a large amount of labeled data which is often very time-consuming to

create. Future research could deal with unsupervised or semi-supervised techniques to lower

the need for labeled data. Furthermore, the training data is often unbalanced which could

lead to entanglement problems, as presented for piano transcription in [97]. Although similar

to the Barlow–Morgenstern scenario, the jazz scenario was slightly more controlled since the

monophonic solo transcriptions were perfectly aligned to the music recordings and there were

no key deviations. Applying the presented solo voice enhancement with a specialized model for

classical music—similar to the salience representation for symphonic music presented in [30], but

data-driven—could increase the retrieval performance in the Barlow–Morgenstern scenario.

In the final part of this thesis, we indicated the potential of web-based interfaces considering two

multimedia scenarios. With JazzTube, we linked the Weimar Jazz Database (WJD) with publicly

available music recordings on YouTube. On the one hand, this tool offers researchers a way to

retrieve the music recordings corresponding to the annotations in the WJD. Granting access to

the original music recordings is a crucial prerequisite for reproducing scientific experiments based

on this data. On the other hand, JazzTube gives music lovers a way to access and explore the

information contained in the WJD. In a second scenario, we enriched publicly available video

recordings of operas with additional information. Besides the technical challenges of modeling an

opera as a multimedia scenario and defining suitable data structures, we indicated how music

lovers (in this case “Wagner lovers”) can make direct use of existing annotations which were so

far exclusively used for research purposes.

This thesis showed that music constitutes a rich and complex domain for studying a variety of

challenging research questions in multimedia processing, digital signal processing, and machine

learning. This is also reflected by the fact that there exists a growing number of MIR contributions

that explore the potential of DNN-based methods (see Appendix B). Making progress in the

field of deep learning requires different applications and experts with domain-knowledge who

know the training data and can interpret the predictions. The field of MIR—as indicated in this

thesis—can contribute to this progress with various interesting and challenging applications.
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Appendix A

A Dictionary of Musical Themes

In 1949, Barlow and Morgenstern (BM) released the book “A Dictionary of Musical Themes”

which contains 9803 themes of well-known instrumental pieces from the corpus of Western

Classical music [16]. These monophonic themes (usually four bars long) are often the most

memorable parts of a piece of music. Figure A.1 shows an example page from the book for the

themes of Beethoven’s Symphony No. 5 in C Minor. Each theme is given a unique identifier

which we call BM-ID, e. g., B948. There may be several BM-themes (e. g., “1st Theme” for B948

or “2nd Theme” for B951) for a single musical work.

In addition to the book, there exists a website1 called “The Electronic Dictionary of Musical

Themes” (EDM) which offers 9825 themes as MIDI files, along with additional metadata

(composer and work name). There is a large overlap between BM-themes and EDM-themes, but

unfortunately the direct correspondences are not given explicitly. Figure A.2 shows a screenshot

taken from the website which shows the corresponding entries in the EDM to the BM-themes

shown in Figure A.1. Unfortunately, at the point of writing the thesis, the website is no longer

reachable.2 We are in contact with the original authors to reactivate the website in the future.

For our cross-modal retrieval experiments, we assemble a large collection of music recordings

containing Western classical music. We then manually associated the BM-themes to the recordings

in the music collection. Some of the listed themes stem from nowadays relatively unknown

musical works where few or no recordings exist. Thus, striving for a complete coverage of the book

with music recordings is almost impossible. However, we were able to link a several thousand

BM-themes to corresponding music recordings. Establishing these links is a very time-consuming

and work-intense task. At this point, I want to express my gratitude to all the colleagues and

students who participated in this task, in particular: Vlora Arifi-Müller, Lena Krauß, Lukas

1http://www.multimedialibrary.com
2A snapshot of the website can be obtained from the Internet Archive (without the MIDI files):

https://web.archive.org/web/20160330030505/http://multimedialibrary.com/barlow/all_barlow.asp
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A. A Dictionary of Musical Themes

Figure A.1: An example page from the book “A Dictionary of Musical Themes.” The composer is
given at the top of the page. The musical themes are associated to a musical work or a movement
(for symphonies). Furthermore, each theme has a unique identifier, e. g., B948.

Figure A.2: A screenshot taken from the “Electronic Dictionary of Musical Themes”. The themes
are given as lists which link to the corresponding MIDI files.
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A.1 Research Subsets

BM-Mini

BM-Small \ BM-Mini

BM-Medium
#T: 26, #M: 14 #T: 177, #M: 100
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#T: 1869, #M: 1013

BM-Small
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#T: 9803

Figure A.3: Overview of the research subsets BM-Mini, BM-Small, and BM-Medium.

Lamprecht, Sanu Pulimootil Achankunju, Meinard Müller, Frank Zalkow, and all the other

students who helped digitizing and archiving the CDs.

A.1 Research Subsets

For our experiments in Section 2, we created three subsets: BM-Mini, BM-Small, and BM-Medium.

Figure A.3 illustrates the sizes of the three subsets. BM-Mini mainly serves as a “development”

testset. BM-Small already allows for controlled experiments, whereas BM-Medium is a first step

towards a “real–world” scenario (e. g., in a retrieval setting). The subsets were designed such

that BM-Medium is a superset of BM-Small, and BM-Small is a superset of BM-Mini.

As a convention for all subsets, each theme is associated to a single corresponding music recording.

On the other side, however, a single music recording may contain more than one theme (which

explains the higher number of themes compared to the recordings). We use the following

identifiers for the music recordings:

• ComposerID: Composer’s last name (e. g., “Bach” for Johann Sebastian Bach).

• WorkID: Identifier for the musical work. If a composer’s works are listed in a catalogue

(e. g., “Bach-Werke-Verzeichnis (BWV)”), we use them (otherwise we use an abridged

version of the work title). In the case of works with more parts (e. g., movements of

symphony), the respective part number is appended with a dash.

• PerformanceID: Name of the performing ensemble or artist. In case of an orchestra,

usually the conductor’s last name is used.

Of course, this is only an excerpt of the rules we had when defining the identifiers (and there
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were many ad-hoc decisions involved in cases where the rules did not apply). However, with a

combination of these three IDs, we can locate the relevant recordings.

A.1.1 BM-Mini

BM-Mini contains 26 Themes (#T) and 14 music recordings (#M). Meant as a development

testset, we picked famous compositions and from which we the recordings very well (e. g.,

Beethoven’s 5th Symphony). Table A.1 lists the themes, the corresponding music recordings,

their durations, and the type of ensemble.

ID BM-ID ComposerID WorkID PerformanceID Dur. (s) Ensemble

0169 B83 Bach BWV1041-01 Sitkovetsky 247.933 Concerto

0389 B301 Bach BWV0846-01 Belder 147.627 Solo

0807 B689 Beethoven Op002No1-01 Brendel 246.267 Solo

0808 B690 Beethoven Op002No1-01 Brendel 246.267 Solo

0846 B728 Beethoven Op013-01 Brendel 548.000 Solo

0847 B729 Beethoven Op013-01 Brendel 548.000 Solo

0848 B730 Beethoven Op013-01 Brendel 548.000 Solo

1066 B948 Beethoven Op067-01 Blomstedt 485.493 Orchestra

1067 B949 Beethoven Op067-01 Blomstedt 485.493 Orchestra

1068 B950 Beethoven Op067-01 Blomstedt 485.493 Orchestra

1069 B951 Beethoven Op067-01 Blomstedt 485.493 Orchestra

1070 B952 Beethoven Op067-01 Blomstedt 485.493 Orchestra

1071 B953 Beethoven Op067-01 Blomstedt 485.493 Orchestra

1149 B1031 Beethoven Op011-01 Berkes 556.080 Trio

1511 B1375 Brahms HungarianDances-05 SchmidtIsserstedt 160.133 Orchestra

1512 B1376 Brahms HungarianDances-05 SchmidtIsserstedt 160.133 Orchestra

2219 C232 Chopin Op024-02 Groot 141.773 Solo

2221 C234 Chopin Op030-02 Groot 85.920 Solo

2236 C249 Chopin Op063-03 Groot 135.933 Solo

2276 C289 Chopin Op028-04 Davidovich 143.093 Solo

2287 C300 Chopin Op028-15 Davidovich 368.893 Solo

2288 C301 Chopin Op028-15 Davidovich 368.893 Solo

7752 S533 Schubert D0759-01 Goodman 803.507 Orchestra

7753 S534 Schubert D0759-01 Goodman 803.507 Orchestra

7754 S535 Schubert D0759-01 Goodman 803.507 Orchestra

7940 S713 Schumann Op015-07 Horowitz 169.507 Solo

Table A.1: Subset BM-Mini.

A.1.2 BM-Small

BM-Small contains 177 Themes (#T) and 100 music recordings (#M). In setting up this subset,

the goal was to have a cross section of famous composers and different musical styles. Table A.2
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lists the themes, the corresponding music recordings, their durations, and the type of ensemble.

ID BM-ID ComposerID WorkID PerformanceID Dur. (s) Ensemble

0116 B30 Bach BWV1046-01 Belder 234.133 Concerto

0126 B40 Bach BWV1048-01 Belder 319.160 Concerto

0167 B81 Bach BWV1065-01 Schornsheim 239.560 Concerto

0169 B83 Bach BWV1041-01 Sitkovetsky 247.933 Concerto

0179 B93 Bach BWV0543-01 Fagius 208.693 Solo

0242 B156 Bach BWV1002-03-1 Lubotsky 172.800 Solo

0257 B171 Bach BWV1030-01 Wentz 438.720 Duo

0261 B175 Bach BWV1001-01 Lubotsky 295.800 Solo

0297 B209 Bach BWV1009-05 Linden 224.360 Solo

0333 B245 Bach BWV0808-01 Asperen 201.533 Solo

0386 B298 Bach BWV0565-01 Fagius 169.493 Solo

0387 B299 Bach BWV0565-02 Fagius 376.507 Solo

0389 B301 Bach BWV0846-01 Belder 147.627 Solo

0390 B302 Bach BWV0846-02 Belder 119.480 Solo

0391 B303 Bach BWV0847-01 Belder 87.560 Solo

0392 B304 Bach BWV0847-02 Belder 90.520 Solo

0557 B461 Bartok Sz112-01 Chung 968.867 Concerto

0558 B462 Bartok Sz112-01 Chung 968.867 Concerto

0650 B554 Beethoven WoO059 Brendel 167.987 Solo

0688 B592 Beethoven Op018No4-01 BudapestStringQuartet 392.133 Quartet

0689 B593 Beethoven Op018No4-01 BudapestStringQuartet 392.133 Quartet

0804 B687 Beethoven Op017-01 Tarjani 486.227 Duo

0807 B689 Beethoven Op002No1-01 Brendel 246.267 Solo

0808 B690 Beethoven Op002No1-01 Brendel 246.267 Solo

0846 B728 Beethoven Op013-01 Brendel 548.000 Solo

0847 B729 Beethoven Op013-01 Brendel 548.000 Solo

0848 B730 Beethoven Op013-01 Brendel 548.000 Solo

0880 B762 Beethoven Op027No2-01 Brendel 361.533 Solo

0881 B763 Beethoven Op027No2-01 Brendel 361.533 Solo

1066 B948 Beethoven Op067-01 Blomstedt 485.493 Orchestra

1067 B949 Beethoven Op067-01 Blomstedt 485.493 Orchestra

1068 B950 Beethoven Op067-01 Blomstedt 485.493 Orchestra

1069 B951 Beethoven Op067-01 Blomstedt 485.493 Orchestra

1070 B952 Beethoven Op067-01 Blomstedt 485.493 Orchestra

1071 B953 Beethoven Op067-01 Blomstedt 485.493 Orchestra

1149 B1031 Beethoven Op011-01 Berkes 556.080 Trio

1473 B1337 Brahms Op015-01 Fleisher 1279.627 Concerto

1474 B1338 Brahms Op015-01 Fleisher 1279.627 Concerto

1475 B1339 Brahms Op015-01 Fleisher 1279.627 Concerto

1476 B1340 Brahms Op015-01 Fleisher 1279.627 Concerto

1511 B1375 Brahms HungarianDances... SchmidtIsserstedt 160.133 Orchestra

1512 B1376 Brahms HungarianDances... SchmidtIsserstedt 160.133 Orchestra

1551 B1415 Brahms Op025-04 Han 489.200 Quartet

1552 B1416 Brahms Op025-04 Han 489.200 Quartet

1553 B1417 Brahms Op025-04 Han 489.200 Quartet

1857 B1711j Britten Op002 EndellionStringQuartet 797.707 Quartet

1858 B1711k Britten Op002 EndellionStringQuartet 797.707 Quartet

1859 B1711l Britten Op002 EndellionStringQuartet 797.707 Quartet

1860 B1711m Britten Op002 EndellionStringQuartet 797.707 Quartet

Continued on next page
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ID BM-ID ComposerID WorkID PerformanceID Dur. (s) Ensemble

2184 C198 Chopin Op010-12 Lortie 169.173 Solo

2210 C223 Chopin Op066 Davidovich 305.000 Solo

2211 C224 Chopin Op066 Davidovich 305.000 Solo

2219 C232 Chopin Op024-02 Groot 141.773 Solo

2221 C234 Chopin Op030-02 Groot 85.920 Solo

2236 C249 Chopin Op063-03 Groot 135.933 Solo

2245 C258 Chopin Op009-02 Harasiewicz 296.093 Solo

2276 C289 Chopin Op028-04 Davidovich 143.093 Solo

2287 C300 Chopin Op028-15 Davidovich 368.893 Solo

2288 C301 Chopin Op028-15 Davidovich 368.893 Solo

2598 D30 Debussy L103-01 Badings 278.160 Concerto

2665 D97 Debussy L095-01 Kocsis 252.080 Solo

2666 D98 Debussy L095-01 Kocsis 252.080 Solo

2712 D144 Debussy L075-03 Kocsis 352.000 Solo

2713 D145 Debussy L075-03 Kocsis 352.000 Solo

2841 D262 Dukas ApprentiSorcier Fricsay 565.747 Orchestra

2842 D263 Dukas ApprentiSorcier Fricsay 565.747 Orchestra

2843 D264 Dukas ApprentiSorcier Fricsay 565.747 Orchestra

2960 D372 Dvorak B083/8 Farrer 247.733 Orchestra

2961 D373 Dvorak B083/8 Farrer 247.733 Orchestra

3022 D434 Dvorak B178-01 Szell 520.760 Orchestra

3023 D435 Dvorak B178-01 Szell 520.760 Orchestra

3024 D436 Dvorak B178-01 Szell 520.760 Orchestra

3031 D443 Dvorak B178-04 Szell 654.573 Orchestra

3032 D444 Dvorak B178-04 Szell 654.573 Orchestra

3033 D445 Dvorak B178-04 Szell 654.573 Orchestra

3440 G39 Gershwin AmericanParis Gershwin 947.533 Orchestra

3441 G40 Gershwin AmericanParis Gershwin 947.533 Orchestra

3442 G41 Gershwin AmericanParis Gershwin 947.533 Orchestra

3443 G42 Gershwin AmericanParis Gershwin 947.533 Orchestra

3617 G206 Granados Op037-02 Bream 301.947 Solo

3618 G207 Granados Op037-02 Bream 301.947 Solo

3722 G310 Grieg Op036-01 CohenR 585.707 Duo

3723 G311 Grieg Op036-01 CohenR 585.707 Duo

3790 H9 Handel HWV287-01 Miller 157.440 Concerto

3794 H13 Handel HWV289-01 Schmitt 314.267 Concerto

3795 H14 Handel HWV289-01 Schmitt 314.267 Concerto

3928 H147 Handel HWV365-01 Bosgraaf 155.440 Duo

3944 H163 Handel HWV368a-01+HWV3... EcoleOrphee 654.453 Quartet

3964 H183 Handel HWV361-01+HWV36... EcoleOrphee 439.707 Trio

4081 H300 Haydn Hob07bNo002-01 Walevska 809.907 Concerto

4082 H301 Haydn Hob07bNo002-01 Walevska 809.907 Concerto

4100 H320 Haydn Hob03No006-01 BuchbergerQuartet 113.867 Quartet

4116 H336 Haydn Hob03No031-01 BuchbergerQuartet 385.013 Quartet

4484 H703 Haydn Hob15No027-01 VanSwietenTrio 470.893 Trio

4485 H704 Haydn Hob15No027-01 VanSwietenTrio 470.893 Trio

4856 K30 Khachaturian ConcertoViolinD... Kogan 787.853 Concerto

4857 K31 Khachaturian ConcertoViolinD... Kogan 787.853 Concerto

4858 K32 Khachaturian ConcertoViolinD... Kogan 787.853 Concerto

4889 K63 Kodaly GalantaDances FischerI 933.533 Orchestra

4890 K64 Kodaly GalantaDances FischerI 933.533 Orchestra

Continued on next page
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ID BM-ID ComposerID WorkID PerformanceID Dur. (s) Ensemble

4891 K65 Kodaly GalantaDances FischerI 933.533 Orchestra

4892 K66 Kodaly GalantaDances FischerI 933.533 Orchestra

4893 K67 Kodaly GalantaDances FischerI 933.533 Orchestra

4894 K68 Kodaly GalantaDances FischerI 933.533 Orchestra

4895 K69 Kodaly GalantaDances FischerI 933.533 Orchestra

4896 K70 Kodaly GalantaDances FischerI 933.533 Orchestra

5137 L189 Liszt S541/3 Howard 253.600 Solo

5551 M289 Mendelssohn Op030-03 Laar 158.867 Solo

5702 M429 Mozart KV315 Graf 386.040 Concerto

5707 M434 Mozart KV622-01 Boer 719.813 Concerto

5718 M445 Mozart KV447-01 Jeurissen 400.040 Concerto

5719 M446 Mozart KV447-01 Jeurissen 400.040 Concerto

5796 M522a Mozart KV219-01 Carmignola 576.573 Concerto

5797 M523 Mozart KV219-01 Carmignola 576.573 Concerto

5798 M524 Mozart KV219-01 Carmignola 576.573 Concerto

5831 M557 Mozart KV186-02 Graaf 124.720 Decet

5835 M561 Mozart KV188-01 Zon 105.853 Septet

5853 M579 Mozart KV334-01 Nodel 398.320 Concerto

5890 M615 Mozart KV298-01 Grauwels 355.707 Quartet

5894 M619 Mozart KV370-01 KochL 436.627 Quintet

5957 M682 Mozart KV581-01 Leister 543.000 Quintet

5962 M687 Mozart KV452-01 Wurtz 568.587 Quintet

5963 M688 Mozart KV452-01 Wurtz 568.587 Quintet

6011 M736 Mozart KV361-01 Schneider 597.707 Orchestra

6097 M822 Mozart KV145 Matousek 175.080 Concerto

6115 M840 Mozart KV378-01 Accardo 753.507 Duo

6247 M972 Mozart KV550-01 Linden 448.907 Orchestra

6248 M973 Mozart KV550-01 Linden 448.907 Orchestra

6419 P37 Paganini MS025-24 Accardo 262.507 Solo

6500 P114 Piston IncredibleFluti... Mariano 69.200 Orchestra

6820 R53 Rachmaninoff Op019-01 Shafran 781.693 Duo

6821 R54 Rachmaninoff Op019-01 Shafran 781.693 Duo

6892 R125 Ravel MR081 Steinberg 930.120 Orchestra

6893 R126 Ravel MR081 Steinberg 930.120 Orchestra

7233 S14 Saint CarnavalAnimaux... Licata 87.667 Orchestra

7236 S17 Saint Op033-01 Fournier 328.733 Concerto

7237 S18 Saint Op033-01 Fournier 328.733 Concerto

7266 S47 Saint Op040 Ansermet 448.027 Orchestra

7267 S48 Saint Op040 Ansermet 448.027 Orchestra

7282 S63 Saint Op028 Milstein 522.067 Concerto

7283 S64 Saint Op028 Milstein 522.067 Concerto

7284 S65 Saint Op028 Milstein 522.067 Concerto

7285 S66 Saint Op028 Milstein 522.067 Concerto

7308 S89 Saint Op065-01 Pople 288.533 Septet

7433 S214 Scarlatti K009 Belder 202.600 Solo

7520 S301 Schubert D0899-03 Hoek 338.200 Solo

7538 S319 Schubert D0780-03 Nauta 128.067 Solo

7589 S370 Schubert D0810-01 Brandis 972.000 Quartet

7590 S371 Schubert D0810-01 Brandis 972.000 Quartet

7606 S387 Schubert D0667-04 Sharon 478.520 Quintet

7752 S533 Schubert D0759-01 Goodman 803.507 Orchestra

Continued on next page
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ID BM-ID ComposerID WorkID PerformanceID Dur. (s) Ensemble

7753 S534 Schubert D0759-01 Goodman 803.507 Orchestra

7754 S535 Schubert D0759-01 Goodman 803.507 Orchestra

7940 S713 Schumann Op015-07 Horowitz 169.507 Solo

8029 S802 Schumann Op094-01 EnsembleIncanto 208.787 Duo

8098 S870a Shostakovich Op040-01 Rosler 682.547 Duo

8099 S870b Shostakovich Op040-01 Rosler 682.547 Duo

8352 S1114 Smetana MyCountry-02 Talich 690.147 Orchestra

8353 S1115 Smetana MyCountry-02 Talich 690.147 Orchestra

8354 S1116 Smetana MyCountry-02 Talich 690.147 Orchestra

8355 S1117 Smetana MyCountry-02 Talich 690.147 Orchestra

8780 S1534a Stravinsky DumbartonOaks-0... Stravinsky 261.800 Orchestra

8781 S1534b Stravinsky DumbartonOaks-0... Stravinsky 261.800 Orchestra

8782 S1534c Stravinsky DumbartonOaks-0... Stravinsky 261.800 Orchestra

8793 S1541 Stravinsky OctetWinds-01 Stravinsky 236.573 Orchestra

8794 S1542 Stravinsky OctetWinds-01 Stravinsky 236.573 Orchestra

8795 S1543 Stravinsky OctetWinds-01 Stravinsky 236.573 Orchestra

8988 T58 Telemann TWV043-e4-01 MusicaRhenum 307.693 Quintet

8989 T59 Telemann TWV043-e4-01 MusicaRhenum 307.693 Quintet

8990 T60 Telemann TWV043-e4-01 MusicaRhenum 307.693 Quintet

9167 T198 Tschaikovsky Op071-13 Ansermet 386.360 Orchestra

9168 T199 Tschaikovsky Op071-13 Ansermet 386.360 Orchestra

9169 T200 Tschaikovsky Op071-13 Ansermet 386.360 Orchestra

9170 T201 Tschaikovsky Op071-13 Ansermet 386.360 Orchestra

9270 T301 Turina Op036 Bream 313.467 Solo

9271 T302 Turina Op036 Bream 313.467 Solo

9412 V123 Visee SuiteDMinor-01 Bream 51.400 Solo

Table A.2: Subset BM-Small.

A.1.3 BM-Medium

BM-Small contains 2045 Themes (#T) and 1114 music recordings (#M). In this subset, the

goal was to have a representative cross section of Western classical music. The recordings in

the dataset were selected in a way that complete work groups are represented, e. g., Bach’s

“Well-Tempered Clavier”, all of Beethoven’s symphonies, or Chopin’s “Mazurkas”.

Instead of listing all the 2045 themes, we give an overview of the dataset in the form of

histograms. Figure A.4a shows the number of themes for the top 20 composers. Beethoven’s

quantitative dominance stems from the many symphonies (e. g., his 5th Symphony contains 13

BM-themes). Figure A.4b shows the durations of the music recordings. The mean duration is

385.01 s (σ = 251.29 s). The complete duration of all music recordings combined is about 120 h.

Figure A.4c depicts the durations of the queries as occurring in the respective music recording.

The mean query duration is 8.81 s (σ = 5.87 s).
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(a)

(b)

(c)

Figure A.4: Overview histograms for BM-Medium. (a) Top-20 composers. (b) Durations of the
music recordings. (c) Theme durations in the music recordings.
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Appendix B

Deep Neural Networks in MIR

In recent years, data-driven approaches such as Deep Neural Networks (DNN) enabled significant

progress in many research areas and applications. In the field of Music Information Retrieval

(MIR), various analysis, retrieval, and classification tasks are nowadays approached using DNN-

based techniques, often leading to significant performance improvements when compared to

state-of-the-art algorithms. However, succeeding with DNNs requires researchers to adapt many

hyperparameters, such as the type of input representation, network architecture, and training

procedure. In this appendix, current trends for several MIR tasks, including music structure

analysis, beat tracking, automatic music transcription, harmony analysis, and audio source

separation, are reviewed. For each task, typical approaches form the literature are considered.

Each approach is then summarized with respect to its underlying neural network techniques,

focusing on hyperparameters.

B.1 Sources

The considered publications mainly stem from the following sources:

• International Society for Music Information Retrieval Conferences (ISMIR) 2010–2016

• AES International Conference Semantic Audio 2017

• IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)

2015

• International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA

2017)

• IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

• IEEE Transactions on Audio, Speech, and Language Processing

• IEEE Transactions on Multimedia
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B.2 Abbreviations

We use a number of abbreviations in the subsequent overview. Depending on the task at hand

and publishing community, different “dialects” exist. However, we try to be consistent within

this review. Table B.1 lists the abbreviations used for the reviewed tasks, and Table B.2 lists the

abbreviations used for the methods and hyperparameters.

Abbr. Explanation

FL Feature Learning
F0 F0-Estimation
AMT Automatic Music Transcription
BRA Beat and Rhythm Analysis
MSA Music Structure Analysis
CR Chord Recognition
ASP Audio Source Separation
VAR Various (e. g., Singing Voice Detection, Tagging)

Table B.1: Task abbreviations used in Table B.3.

Abbr. Explanation

RBM Restricted Boltzmann Machine
DBN Deep Belief Network
FNN Fully-connected Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network

MODEL Some model-based extraction output
NMF Activations from an NMF-based model
LinS Linear-frequency Spectrogram
LogS Logarithmic-frequency Spectrogram
MelS Mel-frequency Spectrogram
NCMS Normalized Cepstral Modulation Spectrum
LogLinS Logarithmic-magnitude linear-frequency Spectrogram
LogLogS Logarithmic-magnitude logarithmic-frequency Spectrogram
LogMelS Logarithmic-magnitude Mel-frequency Spectrogram
SquLinS Square-root-magnitude linear-frequency Spectrogram
CubLinS Cubic-root-magnitude linear-frequency Spectrogram

NORM Normalization (no further details given)
NORMTL1 Frame-wise L1-normalization
NORMTL2 Frame-wise L2-normalization
DERIV Derivative
STD Standardization (µ = 0, σ = 1, no further details given)
STDF Standardization per frequency-band/feature
PCA Principal Component Analysis/Whitening
HPSS Harmonic–Percussive Source Separation

Table B.2: Method and hyperparameter abbreviations used in Table B.3.

110



B.3 Overview

B.3 Overview

Task Year Authors Ref. Type Input Pre-proc.

AMT 2012 Böck and Schedl [24] RNN-BLSTM LogLogS DERIV

AMT 2004 Marolt [119] Var HC —

AMT 2011 Nam et al. [137] DBN CubLinS NORMFL1, PCA

AMT 2013 Boulanger-Lewandowski et al. [32] RNN-RBM CubLinS NORM

AMT 2014 Sigtia et al. [174] RNN LogS —

AMT 2017 Ewert and Sandler [61] RNN-LSTM NMF —

AMT 2017 Kelz and Widmer [97] CNN LogLogS —

AMT 2017 Abeßer et al. [1] FNN LogS NORMFL2

AMT 2016 Sigtia et al. [176] RNN — —

AMT 2016 Vogl et al. [194] RNN LogLogS —

AMT 2016 Southall et al. [182] RNN LinS —

AMT 2016 Kelz et al. [98] CNN LogLogS —

ASS 2015 Simpson et al. [177] CNN LinS —

ASS 2016 Nugraha et al. [139] FNN LinS PCA, STD

ASS 2016 Nugraha et al. [140] FNN LinS PCA, STD

ASS 2017 Chandna et al. [38] CNN LinS —

ASS 2015 Uhlich et al. [188] FNN LinS NORMFL2

ASS 2017 Miron et al. [128] CNN LinS —

ASS 2016 Grais et al. [76] FNN LinS STDF

ASS 2015 Huang et al. [90] RNN LMS DERIV

ASS 2017 Luo et al. [118] RNN-BLSTM MelS DERIV

ASS 2017 Uhlich et al. [189] RNN-BLSTM LinS —

ASS 2014 Huang et al. [89] RNN LinS —

BRA 2010 Eyben et al. [62] RNN-BLSTM LogMelS DERIV

BRA 2011 Böck and Schedl [23] RNN-BLSTM LogMelS DERIV

BRA 2012 Battenberg and Wessel [17] DBN — —

BRA 2014 Böck et al. [25] RNN-BLSTM LogS —

BRA 2016 Böck et al. [27] RNN-BLSTM LogS DERIV

BRA 2016 Elowsson [59] FNN HC —

BRA 2016 Holzapfel and Grill [87] CNN LogLogS STDF

BRA 2016 Krebs et al. [104] RNN-BGRU HC —

BRA 2016 Durand and Essid [56] CNN HC —

BRA 2017 Durand et al. [57] CNN HC —

BRA 2015 Böck et al. [26] RNN-BLSTM LogMelS DERIV

CR 2012 Humphrey et al. [92] CNN LogS NORM

CR 2013 Boulanger-Lewandowski et al. [31] RNN SquLinS NORMTL2, PCA

CR 2012 Humphrey and Bello [91] CNN LogS NORM

CR 2017 Korzeniowski and Widmer [102] CNN LogLogS —

CR 2015 Zhou and Lerch [200] CNN LogS PCA, STDF

CR 2017 Korzeniowski and Widmer [103] CNN LogLogS —

CR 2016 Deng and Kwok [45] RNN-BLSTM LogS —

CR 2015 Sigtia et al. [175] FNN LogS —

F0 2017 Bittner et al. [22] CNN LogLogS —

F0 2017 Park and Yoo [142] RNN-LSTM LinS STDF

F0 2016 Rigaud and Radenen [160] RNN-BLSTM MelS DERIV

F0 2016 Kum et al. [106] FNN LogLinS —

FL 2013 Schmidt and Kim [170] DBN HC —

FL 2010 Hamel and Eck [82] DBN LinS —

Continued on next page
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Task Year Authors Ref. Type Input Pre-proc.

FL 2017 Dai et al. [43] CNN Raw —

FL 2012 Hamel et al. [85] FNN LogMelS PCA

FL 2016 Korzeniowski and Widmer [101] FNN LogLogS —

FL 2017 Balke et al. [13] FNN LogS —

FL 2011 Hamel et al. [84] FNN MelS PCA

FL 2014 Dieleman and Schrauwen [46] CNN Raw —

MSA 2017 Cohen-Hadria and Peeters [41] CNN LogMelS, SSM —

MSA 2014 Ullrich et al. [190] CNN LogMelS —

MSA 2015 Grill and Schlüter [77] CNN LogMelS —

MSA 2015 Grill and Schlüter [78] CNN LogMelS HPSS

VAR 2009 Hamel et al. [83] DBN MFCC DERIV

VAR 2011 Dieleman et al. [47] CNN HC —

VAR 2014 van den Oord et al. [191] FCC MODEL —

VAR 2017 Pons and Serra [149] CNN LogMelS STD

VAR 2015 Leglaive et al. [110] RNN-BLSTM LogMelS HPSS

VAR 2017 Pons et al. [150] CNN LogMelS STD

VAR 2015 Schlüter and Grill [169] CNN LogMelS STDF

VAR 2015 Raffel and Ellis [154] CNN LogS NORMTL2, STDF

VAR 2016 Raffel and Ellis [153] CNN LogS —

VAR 2016 Schlüter [168] CNN LogLinS STDF

VAR 2016 Choi et al. [39] CNN LogMelS —

VAR 2016 Lostanlen and Cella [117] CNN LogLogS —

VAR 2016 Jeong and Lee [94] FNN LinS, CMS —

VAR 2017 Hershey et al. [86] CNN LogMelS —

VAR 2017 Dorfer et al. [51] CNN LogMelS —

VAR 2015 Lehner et al. [112] RNN-LSTM HC STD

VAR 2016 Dorfer et al. [50] CNN LogMelS —

Table B.3: Literature Overview.
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Appendix C

DNN Hyperparameter Experiments

In Chapter 5, we trained DNNs to enhance salient voices in time–frequency representations of

polyphonic sound mixtures. We used a certain set of hyperparameters—including the feature

type of the input feature representation the depth of the network—to train a DNN-based model.

In this appendix, we present further experiments that indicate the influence of the choice of

hyperparameters. We evaluate the trained models within a jazz solo transcription scenario where

we assume that the solo instrument is monophonic and that it is salient in the mixture. We

regard the transcription task as a multi-class classification scenario, where, given a frame of a

time–frequency representation of a jazz recording as input, the objective is to classify the musical

pitch of the solo instrument in this frame.

C.1 Technical Details

DNN Architecture

• Fully-connected Neural Network as shown in Figure C.1 (inspired by [98])

• Input: Frames with K ∈ N frequency bands obtained from a suitable time–frequency

representation

• Output: 89 classes (88 pitches and 1 non-voicing class)

• Input feature representations were extracted using the Python package librosa [124]

C.2 Hyperparameters

Input Feature Type
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Figure C.1: Network architecture.

• LINS: STFT (linear frequency), K = 4096 (fs = 22.05 kHz, frame size = 200 ms, hop size =

100 ms) [131]

• MELS: STFT (mel frequency), K = 180 (settings as LINS, but frequency axis consists of

180 mel-bands between 27.5 Hz and 11.025 kHz [183])

• LOGS: STFT (logarithmic frequency), K = 88 (12 semitones per octave, ranging from 27.5

Hz (A0) to 4186 Hz (C8)) [131]

• LOGFB: Semitone filterbank, K = 88 (12 semitones per octave, ranging from 27.5 Hz (A0)

to 4186 Hz (C8)) [130]

⇒ Input features: X := (x1, x2, . . . , xT ), xt ∈ RK (frames), t ∈ [1 : T ]

Feature Compression

• Logarithmic compression xct(k) := log(1 + xt(k)), xt ∈ RK , t ∈ [1 : T ], k ∈ [1 : K]

Temporal Context

• Stacking ±τ ∈ N neighboring input frames as shown in Figure C.2

• Note that this hyperparameter increases the size of the input features to Kτ = K(2τ + 1).

C.3 Experiments

The following set of hyperparameters were considered:

• Input feature type: {LINS, MELS, LOGS, LOGFB}
• Feature compression: {no compression, log compression}
• Temporal context: {0, 1, 2, 4, 8}
• #Hidden layers: {1, 2, 3, 4, 5}

This results in 200 different parameter settings.
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Figure C.2: Frame stacking when using a temporal context of τ = 1. The center frame is
combined with its ±τ neighboring frames and served as input to the DNN.

Training

• DNNs were trained with the Python library keras [40] using the Theano backend [185].

• Training was performed at the university’s local computer center1 where we have access to

a GPU pool of 14 NVIDIA GEFORCE GTX 980 and 14 NVIDIA GEFORCE GTX 1080.

• Optimizer: Adam (learning rate = 0.02, mini-batch size = 100) [99]

• Epoch size: 4096 mini-batches

• Early stopping: Patience of 10 epochs on the validation data (maximum 100 epochs)

Training Data

• 456 jazz solo transcriptions from the WeimarJazzDatabase [147]

• Total Solo Duration: 810 min.

• Average Solo Duration: 106.75 s (σ = 68.48)

• Voiced Frames: 60.67% (σ = 7.82) (soloist is active)

• Split:

– Five fold cross-validation (80% training set, 20% test set)

– 20% from training set for validation

– Record identifier is used to reduce album effects

– Details on the folds are listed in Table C.1

1https://hpc.fau.de/systems/hpc-systems/
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Training Set Test Set Validation Set

Number of solos 291.80 (0.45) 91.20 (0.45) 73.00 (0.00)
Total solo duration (h) 8.71 (0.12) 2.70 (0.19) 2.11 (0.07)
Avg. solo duration (s) 107.42 (1.46) 106.76 (7.44) 104.08 (3.64)

Voiced frames (%) 60.62 (0.32) 60.64 (0.64) 60.73 (1.25)

Table C.1: Mean values (and standard deviations) of number of solos, total solo duration, and
average solo duration averaged of 5 folds for training, test and validation set. Voiced frames
indicates the percentage frames that contain an active soloist.

Evaluation Metrics

• Raw Pitch Accuracy (RPA), Raw Chroma Accuracy (RCA), Voicing Recall (VR), Voicing

False Alarm (VFA), and Overall Accuracy (OA) (MIREX’ Audio Melody Extraction task,

see Chapter 4 or [53] for details)

• Evaluation based on the implementations provided by the mir-eval package [156].

C.4 Results

• Baseline: Melodia [164], average (and std. dev.) over all validation folds

RPA: 0.51 (0.14), RCA: 0.58 (0.11), VR: 0.99 (0.02), VFA: 0.98 (0.03), OA: 0.31 (0.09)

• DNN: Figure C.3 and Figure C.4 summarize the results on all validation folds

– Performance of different input feature representations varies.

– More than 3 hidden layers does not increase accuracy significantly.

– A temporal context of τ = 1 is sufficient in this scenario.

– Applying log-compression to the input features improves the results, especially for

LOGS and LOGFB.

– A network with a single hidden layer and τ = 8 shows unstable results.

• Number of parameters for models range between 10000 and 3 Million (see Table C.2)

• Model training time varied between 1–3 h (see Table C.3).

Possible Future Directions

• Consider a “fairer” model-based baseline approach, e. g., an adaptation of Melodia which is

informed with the pitch distribution estimated on the training set.

• Comparison with other methods, e. g., Random Forests for voicing detection [111].
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LINS MELS LOGS LOGFB

Figure C.3: Raw Pitch Accuracy and Voicing Accuracy for varying temporal context τ and
number of layers using the unprocessed input features.
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LINS MELS LOGS LOGFB

Figure C.4: Raw Pitch Accuracy and Voicing Accuracy for varying temporal context τ and
number of layers using the logarithmically compressed input features.
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L 1 2 3 4 5
τ

LINS 0 190646 199012 207378 215744 224110
1 571760 580126 588492 596858 605224
2 952874 961240 969606 977972 986338
4 1715102 1723468 1731834 1740200 1748566
8 3239558 3247924 3256290 3264656 3273022

MELS 0 16829 25195 33561 41927 50293
1 50309 58675 67041 75407 83773
2 83789 92155 100521 108887 117253
4 150749 159115 167481 175847 184213
8 284669 293035 301401 309767 318133

LOGS 0 8273 16639 25005 33371 41737
1 24641 33007 41373 49739 58105
2 41009 49375 57741 66107 74473
4 73745 82111 90477 98843 107209
8 139217 147583 155949 164315 172681

LOGFB 0 8273 16639 25005 33371 41737
1 24641 33007 41373 49739 58105
2 41009 49375 57741 66107 74473
4 73745 82111 90477 98843 107209
8 139217 147583 155949 164315 172681

Table C.2: Number of parameters.

#Epochs Training Duration (s)

L 1 2 3 4 5 1 2 3 4 5
τ

LINS 0 17.60 17.60 29.40 30.80 29.80 63.52 65.80 113.92 120.20 115.82
1 19.00 19.00 29.20 25.60 28.20 70.79 72.73 113.79 101.61 113.39
2 15.20 15.20 19.80 21.60 24.00 57.27 59.60 79.00 88.00 97.51
4 29.60 15.20 18.40 19.00 21.40 114.32 62.44 75.61 80.69 90.08
8 20.60 14.80 15.20 17.60 19.00 84.25 64.22 67.84 79.89 83.92

MELS 0 16.40 12.00 16.80 16.80 15.20 50.86 39.36 55.29 56.63 51.68
1 22.60 12.60 23.00 18.00 16.00 70.69 41.67 75.42 61.70 54.91
2 20.80 13.20 16.00 16.40 17.00 65.54 43.47 54.46 56.03 59.53
4 19.40 13.00 19.00 23.00 19.40 61.92 44.13 64.97 79.30 68.82
8 14.80 13.20 15.40 16.40 14.00 50.19 46.19 54.63 58.98 51.61

LOGS 0 21.00 16.00 31.40 28.60 35.20 60.68 49.41 97.28 91.55 113.13
1 21.80 40.60 51.20 40.20 54.20 65.55 127.23 161.12 129.97 178.70
2 21.40 46.40 55.20 43.40 47.20 65.40 145.27 175.59 143.86 157.13
4 24.40 39.00 43.80 47.60 40.80 74.93 122.30 141.37 158.25 138.04
8 20.00 34.40 44.40 39.20 44.00 63.19 108.91 145.77 133.81 150.60

LOGFB 0 17.20 12.00 17.60 16.20 15.00 51.04 38.07 55.16 52.85 50.09
1 26.20 12.60 25.60 20.60 18.00 79.68 40.44 80.92 68.17 59.69
2 17.00 12.80 19.00 15.20 16.40 51.92 40.98 61.87 50.49 56.63
4 19.60 14.00 27.20 23.00 24.00 61.08 44.03 86.25 76.81 80.49
8 19.40 15.80 23.60 18.40 16.40 60.75 51.99 77.88 61.91 56.28

Table C.3: Number of epochs and training duration averaged over the five training folds
(uncompressed input features).
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[26] Sebastian Böck, Florian Krebs, and Gerhard Widmer. Accurate tempo estimation based on recurrent

neural networks and resonating comb filters. In Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), pages 625–631, Málaga, Spain, 2015.
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[77] Thomas Grill and Jan Schlüter. Music boundary detection using neural networks on spectrograms

and self-similarity lag matrices. In Proceedings of the European Signal Processing Conference

(EUSIPCO), pages 1296–1300, Nice, France, 2015.
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polyphonic music signals: Approaches, applications, and challenges. IEEE Signal Processing

Magazine, 31(2):118–134, 2014. doi: 10.1109/MSP.2013.2271648. URL http://dx.doi.org/10.

1109/MSP.2013.2271648.
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