
Friedrich-Alexander-Universität Erlangen-Nürnberg

Lab Course

Pitch Estimation

International Audio Laboratories Erlangen

Prof. Dr.-Ing. Bernd Edler

Friedrich-Alexander Universität Erlangen-Nürnberg
International Audio Laboratories Erlangen
Lehrstuhl Semantic Audio Processing
Am Wolfsmantel 33, 91058 Erlangen

bernd.edler@audiolabs-erlangen.de

International Audio Laboratories Erlangen
A Joint Institution of the

Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and
the Fraunhofer-Institut für Integrierte Schaltungen IIS



Authors:

Stefan Bayer,
Nils Werner,

Tutors:

Nils Werner,
Christian Helmrich,

Contact:

Nils Werner, Christian Helmrich,
Friedrich-Alexander Universität Erlangen-Nürnberg
International Audio Laboratories Erlangen
Lehrstuhl Semantic Audio Processing
Am Wolfsmantel 33, 91058 Erlangen
nils.werner@audiolabs-erlangen.de

christian.helmrich@audiolabs-erlangen.de

This handout is not supposed to be redistributed.

Pitch Estimation, c© November 26, 2015



Lab Course

Pitch Estimation

Abstract

When looking at audio signals, one possible signal model is to distinguish between harmonic
components and noise like components. The harmonic components exhibit a periodic structure
in time and it is of interest to express this periodicity via the fundamental frequency F0, i.e.
the frequency of the first sinusoidal component of the harmonic source.

This fundamental frequency is closely related to the so called pitch of the source. The
pitch is defined as how ”low” or ”high” a harmonic or tone-like source is perceived. Although
strictly speaking this is a perceptual property, and is not necessarily equal to the fundamental
frequency, it is often used as a synonym for the fundamental frequency. We will use the term
pitch in this way in the remaining text.

It is also of interest how the relationships in terms of energy between the harmonic and
noise like components of an audio signal are. One feature expressing this relationship is the
Harmonic to Noise Ratio (HNR). The estimation of the pitch and the HNR then can be used
e.g. for efficiently coding the signal, or to generate a synthetic signal based on this and other
information gained from analysing the signal. In this laboratory we will concentrate on a single
audio source, and we will restrict ourselves to speech, which is the primary mode of human
interaction. We will use this signals to develop simple estimators for both features and compare
the results to state-of-the-art solutions for estimating the pitch and the HNR.

1 Pitch Estimation

As stated above, we model an audio signal, or more specificlly a speech signal, as a mixture of a
harmonic signal and a noise signal:

s(t) = h(t) + n(t) (1)

where s(t) is the speech signal, h(t) is the harmonic component, and n(t) ist the noise component.
For time-discrete signal the equation becomes:

s[k] = h[k] + n[k] (2)

k being the sample index.
In this section we will have a closer look at the harmonic component h(t), which can be expressed

as the sum of its partial tones, which are sinusoidals where the frequencies of the individual partial
tones are integer multiples of the fundamental frequency:

h(t) =

N∑
n=1

ansin

(
2πn

F0
+ φn

)
(3)

where an are the individual amplitudes and φn are additional phases for the individual partial
tones.

Unfortunately in real world signals like speech typically neither the amplitudes nor the funda-
mental frequency stay constant over the whole duration of the signal. But when looking closer at
speech signals, we see that these parameters usually only change slowly over time. This behaviour
gives us the possibility to assume that the parameters stay constant if we compart the signals into
small enough sections in time. Such signals are called quasi-stationary.

So the first step towards a pitch estimation is to divide the signal into small enough blocks. The
length of the block is determined by the lowest pitch we like to detect, for most algorithms at least



lower limit upper limit
male 75 Hz 150 Hz

female 125 Hz 250 Hz
child 600 Hz

Table 1: typical fundamental frequencies in human speech

two periods of the signal should be contained within one block to give a reliable estimate. Table 1
gives a rough overview of the pitch ranges in human speech.

The simplest way would now be to just use the zero crossings of the signal. But although
this method is very efficient it is not well suited if higher partials have amplitudes or if the noise
component is very strong.

So most pitch algorithms are based on other methods, for a simple overview go to [1].
In this laboratory we will develop a estimation algorithm based on the autocorrelation [2]. For

discrete time signals the autocorrelation is defined as:

Rxx[l] = lim
N→∞

1

N

N∑
k=−N

x[k]x[k − l] (4)

where l is the so called lag. Of course this is the definition for signals of infinite length, but
we already divided our signal into blocks of length N each, so the autocorrelation becomes (in its
biased form):

Rxx[l] =
1

N

N−1∑
k=l

x[k]x[k − l] (5)

We only consider positive lags since the resulting autocorrelation sequence is symmetric around
l = 0.

Another form of the autocorrelation is the so called unbiased autocorrelation sequence

Rxx[l] =
1

N − l

N−1∑
k=l

x[k]x[k − l] (6)

The difference between unbiased and biased autocorrelation is that the unbiased takes the
decreasing number of samples involved in the summation into account. When looking at figure 1
we observe the difference between the biased and the unbiased autocorrelation, the biased tapers
off towards high lags.

When we compare the autocorrelation equations with our assumption that the signal is periodic
with a periodicity T0 = 1/F0:

x[k] ≈ x[k +mT0],m ∈ Z (7)

we see that for such a signal we can expect local maxima of the autocorrelation sequence for
lags that are a multiple of T0. By finding the maximum of the autocorrelation we get an estimate
of the fundamental frequency. Note that the autocorrelation function always has a maximum at
l = 0, so to not erroneously detecting the zero lag as maximum, it is wise to restrict the search
within lags that correspond to the upper and lower limits of the fundamental frequency range under
consideration.

Also the found global maximum might not be at the lag corresponding to the true fundamental
frequency but can possibly be an integer multiple of that. Furthermore note that due to this, the
estimate can jump between lags in consecutive frames leading also to jumps in the F0-estimate.
These effects are called octave-jumps. For a more robust estimation this must be taken into account.
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Figure 1: Comparison of the biased and unbiased autocorrelation sequence for a periodic signal
(part of a vowel of a male speaker).

Homework Excercise 1

Pitch estimation: Theory

1. Given is the time sequence x[k] = {4,−2,−3, 1, 5,−1}. Calculate both the biased and unbi-
ased autocorrelation sequences using pen and paper. Sketch the time and the autocorrelation
sequence.

2. Calculate the necessary window length (both in ms and in samples for a sampling frequency
of fs = 16000Hz) for an autocorrelation based pitch estimator that should detect typical
pitches for human speech as given in table 1.

3. Calculate the minimum and maximum lag in the autocorrelation domain for said estimator
for the desired F0 range.

4. What is the relationship between the autocorrelation and the power spectral density (PSD)?

5. Think about strategies to avoid octave jumps and errors in the autocorrelation based pitch
estimation.
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Figure 2: Example of a signal consisting of a harmonic part and a noise part.

2 Harmonic to Noise Ratio Estimation

We now go back to our signal model of equation 2. As already explained, the relationship between
the harmonic component h(t) and the noise component n(t) is of interest here. One possible
characterization of that relationship is the ratio of the energies of both components, which we
will call harmonic to noise ratio. The same assumption as above, i.e. that the energies of the
components and therefore the HNR will vary over time, but slow enough so that it also can be
assumed as constant for a small enough amount of time. If we know the exact nature of both h[k]
and n[k] the HNR will then be:

HNR =

∑N
k=1 h[k]2∑N
k=1 n[k]2

(8)

Unfortunately, for a real world signal neither h[k] nor n[k] are known, so one has to find ways
how to estimate the HNR. For example see figure 2 where in the mixture of harmonic and noise
components neither in the time sequence representation or the Fourier transformed representation
a clear distinction can be seen between the harmonic and noise parts.

Lets start with some basic assumptions that will make this task a little easier. We assume that
h[k] and n[k] are uncorrelated, furthermore we assume that we already know F0 of h[k] and that
n[k] is white gaussian noise with zero mean. Now we will have a closer look at the autocorrelation
and insert equation 2 into 6:



Rxx[l] =
1

N − l

N−1∑
k=l

(h[k] + n[k])(h[k − l] + n[k − l]) (9)

for l = 0 we would get the energy of the combined signal. Now we look what happens for l = T0
(by expanding the equation above):

Rxx[T0] =
1

N − T0
(
∑N−1

k=T0
h[k]h[k − T0] +

∑N−1
k=T0

h[k]n[k − T0] +∑N−1
k=T0

h[k − T0]n[k] +
∑N−1

k=T0
n[k]n[k − T0]) (10)

Under the assumptions from above (no correlation, white noise), the last three sums will be
approximately zero, which leaves:

Rxx[T0] =
1

N − T0

N−1∑
k=T0

h[k]h[k − T0] (11)

We now insert the approximation of equation 7:

Rxx[T0] ≈ 1

N − T0

N−1∑
k=T0

h[k]h[k] (12)

and see that the autocorrelation at lag l = T0 is approximately the energy of the entire harmonic
component. Together with Rxx[0] we can now calculate an estimation of the HNR:

HNR =
Rxx[T0]

Rxx[0]−Rxx[T0]
. (13)

We now have found a nice estimate of the HNR that can be implemented very straightforward.
In the literature many other approaches can be found, feel free to search for different algorithms
and get some of the ideas, whether be it time-domain, time/frequency-transform based, or methods
using the cepstrum [3].

Homework Excercise 2

Harmonic to Noise Ration: Theory

1. Why can we assume that the last three sums in equation 10 are approximately zero under
the stated terms that the noise is white and the noise and the harmonic component are
uncorrelated?

2. Which autocorrelation should be used for the HNR estimation, the biased or the unbiased?
Why?

3. Estimate the HNR for the sequence given in home work part 1 using the calculated auto-
correlation and the estimation of equation 13 (Hint: take the position first maximum of
the autocorrelation as T0). If the result seems to be not in line with the theory find an
explanation for that.

4. Search for or think about other possibilities to estimate the HNR.



Figure 3: Screenshot of the Matlab GUI for comparing the implemented pitch estimation against
the given reference.

3 The Experiment

3.1 Matlab based estimation

The Matlab directory contains stubs for the autocorrelation function, the F0-estimation function,
and the HNR estimation function called autcorr.m, f0_estimation.m, and hnr_estimation.m.
Furthermore for the evaluation of the pitch estimation against a given reference, a GUI called
APLab_pitch.m exists. A screenshot of the GUI can be seen in figure 3. A similar GUI for the
HNR estimation exists, called APLab_hnr.m. The subdirectory audiofiles contains several example
audio files, you can bring your own files. Additionally, the GUIs allow to make recordings on the
fly.



3.2 Exercises

Lab Experiment 1

Pitch Estimation: Instructions

1. Create a new file and implement the autocorrelation of equations 5 and 6 as Matlab functions
and compare the results for different signals to the Matlab function xcorr(). If the results
differ, find an explanation for the difference.

2. Open f0 estimate.m in the Matlab editor.

3. Implement a first version of the F0-estimator based on the comments in f0 estimate.m.

4. Compare the results using the APLab pitch GUI to the results of the reference F0 estimator.

5. Implement a refinement to reduce octave errors and jumps.

6. Compare the results using the APLab pitch GUI to the results of the reference F0 estimator.

7. Explain your solution.



Lab Experiment 2

Harmonic to Noise Ration Estimation: Instructions

1. Implement the HNR estimation derived in section 2 as Matlab function. For this use the
already implemented functions for the pitch estimation and auto correlation.

2. Load the files synth vowel 1.wav and synth vowel 2.wav into the Matlab workspace. Both
files contain synthetic vowels designed to have the same HNR and same F0. Calculate
the HNR estimates for both signals using your implemented HNR estimation (Fs=16000,
F0=100) on the complete items, if they differ, find an explanation. Note that for this exercise
you should not use the APLab HNR tool. (Hint: plotting the signals for inspection is always
a good idea).

3. Compare the estimate to the reference estimate using the APLab HNR tool.

4. Both the F0 and HNR estimates are not reliable for certain signal portions, i.e. large
variations can be observed. Why is this? And what solutions might be found to overcome
this problem? Implement your solution.
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